The externally studentized normal midrange distribution
SMR.Rd
Computes the probability density, the cumulative distribution function and the quantile function and generates random samples for the externally studentized normal midrange distribution with the numbers means equal to size
, the degrees of freedom equal to df
and the number of
points of the Gauss-Legendre quadrature equal to np
.
Usage
dSMR(x, size, df, np=32, log = FALSE)
pSMR(q, size, df, np=32, lower.tail = TRUE, log.p = FALSE)
qSMR(p, size, df, np=32, eps = 1e-13, maxit = 5000, lower.tail = TRUE, log.p = FALSE)
rSMR(n, size, df = Inf)
Arguments
- x, q
vector of quantiles \(x \in R\) and \(q \in R\).
- p
vector of probabilities \((0, 1)\).
- size
sample size. Only for \(size > 1\).
- n
vector size to be simulated \(n > 1\).
- df
degrees of freedom \(df > 0\).
- np
number of points of the gaussian quadrature \(np > 2\).
- log, log.p
logical argument; if
TRUE
, the probabilities \(p\) are given as \(log(p)\).- lower.tail
logical argument; if
TRUE
, the probabilities are \(P[X \leq x]\) otherside, \(P[X \geq x].\)- eps
stopping criterion for Newton-Raphson's iteraction method.
- maxit
maximum number of interaction in the Newton-Raphson method.
Details
Assumes np = 32 as default value for dSMR, pSMR and qSMR. If df
is not specified, it assumes the default value Inf
in rSMR
. When df=1
, the convergence of the routines requires np>250
to obtain the desired result accurately.
The Midrange distribution has density
$$f(\overline{q};n,\nu) =\int^{\infty}_{0} \int^{x\overline{q}}_{-\infty}2n(n-1)x\phi(y) \phi(2x\overline{q}-y)[\Phi(2x\overline{q}-y)-\Phi(y)]^{n-2}f(x;\nu)dydx,$$
where, \(q\) is the quantile of externally studentized midrange distribution, \(n\) (size
) is the sample size and \(\nu\) is the degrees of freedon.
The externally studentized midrange distribution function is given by
$$
F(\overline{q};n,\nu)=\int^{\overline{q}}_{-\infty}
\int^{\infty}_{0}\int^{x\overline{q}}_{-\infty}2n(n-1)x\phi(y) \phi(2xz-y)[\Phi(2xz-y)-\Phi(y)]^{n-2}f(x;\nu)dydxdz.
$$
where, \(q\) is the quantile of externally studentized midrange distribution, \(n\) (size
) is the sample size and \(\nu\) is the degrees of freedon.
Value
dSMR
gives the density, pSMR
gives the cumulative distribution function, qSMR
gives the quantile function, and rSMR
generates random deviates.
References
Batista, BDO; Ferreira, DF. The externally studentized normal midrange distribution. Submmited for publications. 2012.
See also
Package homepage: <www.dex.ufla.br/~danielff/r_resources.html>
Examples
library(SMR)
#example 1:
x <- 2
q <- 1
p <- 0.9
n <- 30
size <- 5
df <- 3
np <- 32
dSMR(x, size, df, np)
#> [1] 0.01926172
pSMR(q, size, df, np)
#> [1] 0.9275892
qSMR(p, size, df, np)
#> [1] 0.8350065
rSMR(n, size, df)
#> [1] -0.02068743 0.77858823 0.29546709 0.05514410 0.18313829 1.17741330
#> [7] 0.70916181 -0.08738732 0.01665665 -1.19008348 -0.22487655 -1.28955577
#> [13] 0.61787914 -0.18440686 1.01805963 -0.31358327 1.37266252 -1.04441467
#> [19] 0.55016967 0.81967698 0.10373011 0.96467175 -0.23268716 -0.27036517
#> [25] 0.98376392 0.58919367 -0.79584598 -0.09819476 0.21829588 -0.19893010
#example 2:
x <- c(-1, 2, 1.1)
q <- c(1, 0, -1.5)
p <- c(0.9, 1, 0.8)
n <- 10
size <- 5
df <- 3
np <- 32
dSMR(x, size, df, np)
#> [1] 0.13805831 0.01926172 0.11052698
pSMR(q, size, df, np)
#> [1] 0.92758919 0.50000000 0.03033035
qSMR(p, size, df, np)
#> [1] 0.8350065 Inf 0.4981228
rSMR(n, size, df)
#> [1] -0.19227009 -1.96243753 0.72813882 -0.35858015 0.60250231 -2.12672520
#> [7] 0.58086350 0.03465036 -0.15616610 0.44558716