Density, distribution function, quantile function and random generation for the normal distribution with parameters: location and scale
Usage
dgumbel(x, location, scale)
pgumbel(q, location, scale, lower.tail = TRUE)
qgumbel(p, location = 0, scale = 1, lower.tail = TRUE)
Details
The CDF of Gumbel distribution is:
$$
F(x;\mu ,\beta )=e^{-e^{-(x-\mu )/\beta }}, \quad \mu \in \mathbf{R}, \beta > 0,
$$
where \(\mu\) is location parameter (location
) and \(\beta\) is scale parameter (scale
).
The PDF of Gumbel distribution is:
$$
\frac{1}{\beta }e^{-(z+e^{-z})},
$$
where \(z={\frac {x-\mu }{\beta }}\).
The quantile is:
$$
\mu -\beta \ln(-\ln(p)), \quad 0 < p < 1.
$$