Compute the sample mode.
Arguments
- x
R object (list) of class leem. Use
new_leem()
function.- na.rm
a logical value indicating whether
NA
values should be stripped before the computation proceeds.- rounding
Numerical object. Rounds the values in its first argument to the specified number of decimal places (default
2
).- grouped
Logical object. Determines whether the measure of position result will be based on grouped data or not (default
TRUE
).- details
Logical object. Details of data (default
FALSE
).
Examples
library(leem)
# set.seed(10)
x <- rnorm(36, 100, 50)
set.seed(10)
y <- rbinom(36, 10, 0.8)
w <- rep(letters[1:4], 1:4)
(tab1 <- y |> new_leem(variable = "discrete") |> tabfreq())
#>
#> Table of frequency
#> Type of variable: discrete
#>
#> Groups Fi Fr Fac1 Fac2 Fp Fac1p Fac2p
#> 1 6 1 0.03 1 36 3 2.78 100.00
#> 2 7 8 0.22 9 35 22 25.00 97.22
#> 3 8 13 0.36 22 27 36 61.11 75.00
#> 4 9 11 0.31 33 14 31 91.67 38.89
#> 5 10 3 0.08 36 3 8 100.00 8.33
#> ==============================================
#> Groups: Discretized grouping
#> Fi: Absolute frequency
#> Fr: Relative frequency
#> Fac1: Cumulative frequency (below)
#> Fac2: Cumulative frequency (above)
#> Fp: Percentage frequency
#> Fac1p: Cumulative percentage frequency (below)
#> Fac2p: Cumulative percentage frequency (above)
#>
(tab2 <- x |> new_leem(variable = "continuous") |> tabfreq())
#>
#> Table of frequency
#> Type of variable: continuous
#>
#> Classes Fi PM Fr Fac1 Fac2 Fp Fac1p Fac2p
#> 1 -16.97 |--- 17.29 2 0.16 0.06 2 36 6 5.56 100.00
#> 2 17.29 |--- 51.55 6 34.42 0.17 8 34 17 22.22 94.44
#> 3 51.55 |--- 85.81 8 68.68 0.22 16 28 22 44.44 77.78
#> 4 85.81 |--- 120.07 4 102.94 0.11 20 20 11 55.56 55.56
#> 5 120.07 |--- 154.33 12 137.20 0.33 32 16 33 88.89 44.44
#> 6 154.33 |--- 188.59 4 171.46 0.11 36 4 11 100.00 11.11
#>
#> ==============================================
#> Classes: Grouping of classes
#> Fi: Absolute frequency
#> PM: Midpoint
#> Fr: Relative frequency
#> Fac1: Cumulative frequency (below)
#> Fac2: Cumulative frequency (above)
#> Fp: Percentage frequency
#> Fac1p: Cumulative percentage frequency (below)
#> Fac2p: Cumulative percentage frequency (above)
#>
(tab3 <- w |> new_leem(variable = "discrete") |> tabfreq())
#>
#> Table of frequency
#> Type of variable: discrete
#>
#> Groups Fi Fr Fac1 Fac2 Fp Fac1p Fac2p
#> 1 a 1 0.1 1 10 10 10 100
#> 2 b 2 0.2 3 9 20 30 90
#> 3 c 3 0.3 6 7 30 60 70
#> 4 d 4 0.4 10 4 40 100 40
#> ==============================================
#> Groups: Discretized grouping
#> Fi: Absolute frequency
#> Fr: Relative frequency
#> Fac1: Cumulative frequency (below)
#> Fac2: Cumulative frequency (above)
#> Fp: Percentage frequency
#> Fac1p: Cumulative percentage frequency (below)
#> Fac2p: Cumulative percentage frequency (above)
#>
y |> new_leem(variable = "discrete") |> tabfreq() |> mfreq()
#> [1] 8
x |> new_leem(variable = "continuous") |> tabfreq() |> mfreq()
#> [1] 137.2
w |> new_leem(variable = "discrete") |> tabfreq() |> mfreq()
#> [1] "d"