Universidade Federal de São João Del Rei

Ben Dêivide de O. Batista

Sumário

1	Pese	quisa Científica e a Estatística
	1.1	Pesquisa Científica
	1.2	População
	1.3	Amostra e amostragem
	1.4	Inferência
	1.5	Estágios da pesquisa científica
		1.5.1 Identificação e formulação do problema científico
		1.5.2 Formulação da hipótese científica
	1.6	Estatística na pesquisa científica
2	Pla	nejamento de experimentos
	2.1	Conceitos básicos
		2.1.1 Experimento ou Ensaio
		2.1.2 Material experimental
		2.1.3 Fator experimental
		2.1.4 Nível
		2.1.5 Tratamento
		2.1.6 Testemunha
		2.1.7 Parcela ou unidade experimental
		2.1.8 Delineamento experimental
		2.1.9 Área útil
		2.1.10 Bordaduras
		2.1.11 Área total \ldots
		2.1.12 Erro experimental
	2.2	Princípio básicos da experimentação
		2.2.1 Casualização
		2.2.2 Repetição
		2.2.3 Controle experimental
		2.2.3.1 Controle de técnicas experimentais
		$2.2.3.2$ Controle local \ldots 10
		2.2.3.3 Controle estatístico
	2.3	Implicações do controle experimental
3	Exe	mplos Resolvidos 1:
	3.1	Delineamentos Inteiramente Casualizados
		3.1.1 Exemplo sobre o peso médio final (Kg) de peixes 1:
		$3.1.1.1$ Solução analítica \ldots 14
		3.1.1.2 Usando o R - Criando as rotinas

Sumário 🔶

	3.1.1.3 Usando o R - Rotinas de pacotes	18 19
<u>ว</u> า	5.1.1.5 Usando o SAS - Unando as rounas	20 94
5.2	Defineamento em Diocos Casualizados	24
	2.2.1 Exemplo sobre a produtividade (Kg/parcela) de variedades de anala	24
	3.2.1.1 Solução analítica	24 97
	3.2.1.2 Usando o R - Oriando as rotinas	21
	3.2.1.3 Usando o R - Rotinas de pacotes	29 20
	3.2.1.4 Usando o SISVAR	32 96
	3.2.1.5 Usando o SAS - Criando as rotinas	30
	$3.2.2$ Exemplo do diametro de mudas de laranjeiras $\dots \dots \dots \dots \dots \dots$	38
	3.2.2.1 Solução analítica	38
	3.2.2.2 Usando o R - Criando as rotinas	41
	3.2.2.3 Usando o R - Rotinas de pacotes	43
	3.2.2.4 Usando o SISVAR	46
	$3.2.2.5$ Usando o SAS - Criando as rotinas $\ldots \ldots \ldots \ldots \ldots \ldots$	50
3.3	Delineamento em Quadrado Latino	52
	3.3.1 Exemplo do ganho de peso de suínos	52
	3.3.1.1 Solução analítica	52
	3.3.1.2 Usando o R - Criando as rotinas $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	55
	3.3.1.3 Usando o R - Rotinas de pacotes	58
	3.3.1.4 Usando o SISVAR	60
	3.3.1.5 Usando o SAS - Criando as rotinas	65
3.4	Estudo do experimento após a ANAVA	67
	3.4.1 Teste de médias	67
	3.4.1.1 Solução analítica	68
	3.4.1.2 Usando o SISVAR	78
	3.4.1.3 Usando o R - Criando as rotinas	86
	3.4.1.4 Usando o R - Rotinas de pacotes	86
	3.4.1.5 Usando o SAS - Criando as rotinas	98
	3.4.2 Regressão Linear	02
	3.4.3 Estudo do efeito de compactação no solo	02
	3.4.4 Estudo do efeito de compactação no solo	15^{-1}
3.5	Esperimentos Fatoriais	16
3.6	Esperimentos Fatoriais	27
3.7	Análises interessantes	33
0.1	8.7.1 Granulometria do milho em ração para suínos	33
	3.7.2 Usando o SISVAR	34
38	$U_{\text{sar}} \text{ DIC } \text{ou } \text{DRC} $	34
0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34
	$3.0.1$ Exempto da variedade de anto $\dots \dots \dots$	94 25
3.0	0.0.1.1 DUIUçau allallula	3U 99
J.9		59
Referê	cias Bibliográficas 1	40

Capítulo 1

Pesquisa Científica e a Estatística

Descrever sobre a estatística experimental requer bases sobre a pesquisa científica. Assim, esse capítulo introduz bases sobre definições e ideias da importância da estatística no desenvolvimento da ciência. Esse capítulo foi baseado em Silva (2007).

1.1 Pesquisa Científica

A ciência de um modo geral, visa compreender o mundo em que o homem vive, tentando buscar o conhecimento da realidade por meio de um processo lógico de investigação. Ela é essencialmente um método de aproximação do mundo empírico, um local em que é suscetível de experiência do homem.

Em busca de explicações sobre os fenômenos naturais desse mundo empírico, o conhecimento científico propõe técnicas para tentar encontrar respostas para esses fenômenos. Essas técnicas seguem regras para que haja uma validade nos resultados encontrados. De um modo mais formal, chamaremos essa técnica de método científico, definido a seguir.

Definição 1.1: Método Científico

Um conjunto ordenado de operações, buscando a compreensão da natureza do problema sem a influência de conceitos preconcebidos do pesquisador é chamado de método científico.

Esse é o procedimento geral da ciência aplicada no processo de obtenção de conhecimento. E esse conhecimento para a ciência é cumulativo e não estático, de forma que nunca está completo e finalizado, mas numa verdade relativa, objetiva, lógica e em constante crescimento. Com o advento da ciência, as perguntas do homem sobre os fenômenos passam de "porquê?" para indagar "Como?". Por exemplo, um problema sobre a produtividade de melão no RN, podemos observar que em uma determinada região nesse estado, seja baixa. Como forma de explicação, poderiam simplesmente responder que a região específica no Estado, empiricamente, observa-se que as condições ambientais são desfavoráveis para o cultivo do melão. Para o pesquisador científico, essa simples resposta não satisfaz o problema. Com indagações mais refinadas, esse profissional perguntaria em que condições ambientais tem sido baixa? É o solo? Pragas e doenças? Clima? Mas, Quais as características relevantes no cultivo do melão para influenciar na produtividade? São as variedades? Fertirrigação e correção do solo? Irrigação?

A pesquisa científica é o processo de investigação sistemática, controlada, empírica e crítica de ideias (proposições hipotéticas) referentes a relações presumidas entre fenômenos com o propósito de descobrir fatos científicos e desenvolver teoria científica.

A seguir, iremos mostrar alguns elementos na pesquisa científica que são importantes para sua compreensão.

1.2 População

A pesquisa científica em particular, tem como propósito a solução de um problema referente aos unidades de interesse específico, que chamamos de população objetivo, ou mais simplesmente, população, em que é definido a seguir.

Definição 1.2: População

Uma coleção bem definida de unidades para a qual se deseja inferir, é chamada de população.

Cada unidade é chamado de elemento da população, e o número de unidades é denominado tamanho da população.

1.3 Amostra e amostragem

Trabalhar com todos os elementos da população tem grandes complicações devido ao custo, tempo, etc.. Quando isso é possível, estamos realizando um censo. Entretanto, podemos trabalhar com um subconjunto dessa população, de modo que consiga responder, por meio de seus elementos, às indagações propostas pela pesquisa à essa população. Esse subconjunto é denominado de amostra. De um modo mais formal, faremos a definição a seguir.

Definição 1.3: Amostra

Um subconjunto de unidades de uma população ou um conjunto de unidades construídos para representá-la é uma amostra dessa população.

O processo de escolha ou construção da amostra é denominado amostragem. A coleção de unidades da qual a amostra pode ser considerada representativa é denominada população amostrada. Os desvios da população amostrada em relação à população objetivo constituem o erro de amostragem. Em resumo, o processo de inferência para a generalização da amostra para a população objetivo compreende os dois passo ilustrados na Figura 1.1.

A forma de se avaliar cada elemento da amostra é verificar a característica de interesse e mensurá-la (Variável quantitativa) ou qualificá-la (Variável qualitativa). A mensuração de uma característica demanda uma regra de correspondência entre as alternativas da característica e os números de um grupo de um conjunto numérico, ou seja, uma função numérica, denominada

Figura 1.1: Os dois passos do processo de inferência para generalização da amostra para a população objetivo.

variável. Cada valor da variável, que representa uma alternativa particular da característica, é um nível dessa variável.

1.4 Inferência

No processo de raciocínio usado na pesquisa científica, partimos de uma ou mais pressuposições e procedemos a uma ou outra proposição, ou a outras pressuposições, cuja veracidade, acreditamos que seja implicada pela veracidade do primeiro conjunto de proposições. Esse processo psicológico é denominado inferência.

Dois processo de inferência se distinguem fundamentalmente:

- Inferência Dedutiva: É o processo de derivação do conhecimento de um membro específico de uma classe a partir do conhecimento geral referente a todos os membros da mesma classe.
- Inferência Indutiva: É o processo de raciocínio através do qual o conhecimento de alguns membros de uma classe é aplicado ou estendido a todos os membros desconhecidos da mesma classe.

1.5 Estágios da pesquisa científica

Podemos distinguir as seguintes operações para o procedimento geral da ciência para aquisição de conhecimento (Figura 1.2):

- 1. Problemas científicos;
- 2. Formulação de hipóteses;
- 3. Verificação empírica das hipóteses;
- 4. Análise e interpretação dos resultados das hipóteses;
- 5. Formulação de novos problemas.

A formulação de novos problemas é resultado da incorporação de novos conhecimentos à hipótese, daí essa propriedade circular do método científico, Figura 1.3.

Da pergunta inicial à sua resposta final, a pesquisa científica passa pelas seguintes etapas:

Figura 1.2: Incorporação de novos conhecimentos.

Figura 1.3: Propriedade circular do método científico.

- 1. Identificação e estabelecimento do problema científico;
- 2. Formulação da hipótese científica;
- 3. Revisão da literatura;
- 4. Construção do plano de pesquisa;
- 5. Coleta dos dados;
- 6. Análise e interpretação dos dados;
- 7. Derivação das conclusões, que pode conduzir à confirmação ou rejeição da hipótese original, e confirmação ou questionamento de resultados de outras pesquisas;
- 8. Apresentação dos resultados de relatório, e difusão desses resultados.

A seguir, vamos enfatizar duas etapas importantes da pesquisa científica, a identificação e formulação do problema, e a formulação da hipótese científica. A ênfase nessas duas etapas é...

1.5.1 Identificação e formulação do problema científico

Um problema científico referente aos unidades de uma população objetivo é uma indagação, questão ou pergunta específica referente a relações de conexão de características desses unidades que seja interpretável por meio do método científico, com as técnicas, procedimentos e recursos disponíveis.

1.5.2 Formulação da hipótese científica

Após a formulação do problema, a próxima etapa é a indagação referente à natureza e a conexões de características que conduz à idealização de um ou mais caminhos para a solução ou resposta ao problema. Cada um desses caminhos idealizados constitui uma hipótese de pesquisa.

Uma hipótese científica ou hipótese de pesquisa é uma proposição de solução ou resposta a um problema de pesquisa que é derivada de uma teoria por inferência dedutiva que permite um teste de confirmação empírica.

A função da hipótese científica é estender o conhecimento científico além das presentes fronteiras do conhecimento teórico. Assim, a hipótese científica é mais do que uma conexão entre especulação e verificação. É o fator essencial do crescimento do conhecimento científico.

Assim, o objetivo de uma pesquisa científica é a verificação de uma hipótese científica referente a um problema científico particular. Vale salientar que devido a impossibilidade do controle absoluto da manifestação de características explicativas e de características estranhas em qualquer pesquisa científica implica que um experimento jamais pode aprovar a hipótese que o origina, mas apenas verificá-la. Dessa forma, um experimento válido que proveja resultados que contradigam a hipótese é suficiente para rejeitá-la.

1.6 Estatística na pesquisa científica

A Estatística é parte da abordagem científica moderna da incerteza. A abordagem científica moderna admite que as "leis" podem predizer apenas "expectativas", e que as observações reais podem diferir destas por "erros aleatórios". É o estudo desses erros que habilita a predições sob incerteza. A matemática da incerteza que governa esses erros é o cálculo de probabilidades.

O progresso da ciência desde o século XX tem sido a fonte para o extraordinário desenvolvimento da estatística, e é notável que esse desenvolvimento iniciou-se na pesquisa agrícola, com os estudos de Fisher que conseguiu a aplicação prática de sua teoria da inferência estatística e conclusões relevantes para a pesquisa científica. Entre elas, a de que a quantidade de informação gerada pelas inferências de uma pesquisa não pode ser maior do que à contida nos dados. Esse desenvolvimento metodológico tem decorrido, em grande parte, do vasto incremento da capacidade de computação que se tornou disponível, principalmente a partir da década de 1960.

Um fato notório é que apesar da consolidação do método científico, particularmente do método estatístico há mais de um século, os conceitos básicos ainda não são do domínio de muitos pesquisadores. Consequentemente, o impacto desse desenvolvimento metodológico ainda não é sentido tão amplamente como seria de se esperar.

Esse atraso não é explicado apenas pela demora natural da incorporação de resultados teóricos à atividade prática. O divórcio que persiste entre a teoria e a prática tem diversas origens, entre elas: falhas no ensino e na transmissão de conhecimentos através de textos, falta de infra-estrutura e recursos materiais nas instituições de pesquisa, obstáculos institucionais e falta de vocação de pesquisadores.

Planejamento de experimentos

tulo 2

Planejar experimentos consiste de uma série de etapas, afim de que os dados observados possam ser analisados e forneçam indiferenças válidas e precisas para a população. As etapas são:

- 1. Estabelecimento do problema e formulação da hipótese: essa etapa define os objetivos do experimento, e os seguintes temas devem ser claramente definidos:
 - a) propósito do experimento;
 - b) população objetivo: coleção das unidades de interesse para a qual é desejado inferir;
 - c) unidades da população objetivo;
- 2. Planejamento da amostra: deve garantir a aptidão do experimento para a derivação das inferências que contribui o seu objetivo. O planejamento da amostra estabelece a composição e o relacionamento das três classes de características da amostra: características respostas, características explicativas e características estranhas. A relação entre essas duas últimas características constitui a estrutura do experimento ou delineamento experimental;
- 3. Planejamento das ações e procedimentos para a execução do experimento: devem ser previsto as ações e os procedimentos que deverão ser adotados durante a condução do experimento para que os recursos necessários estejam disponíveis e sejam implementados nos momentos apropriados;
- 4. Definição do modelo estatístico e dos procedimentos de análise dos dados: os procedimentos de inferência estatística requerem o estabelecimento de um modelo estatístico, ou seja, um modelo matemático que represente a relação entre as variáveis respostas

e as variáveis explicativas, e leve em conta a presença das características estranhas da amostra;

5. Conclusão do experimento:

- a) análise dos resultados;
- b) interpretação dos resultados;
- c) elaboração das conclusões;
- d) divulgação dos resultados.

De fato, há uma correspondência nos dois sentidos entre os objetivos do experimento, o delineamento do experimento e os procedimentos de análise estatística, conforme é ilustrado resumidamente pela Figura 2.1.

Figura 2.1: Correspondência entre objetivos, plano e análise estatística do experimento.

2.1 Conceitos básicos

2.1.1 Experimento ou Ensaio

Segundo Silva (2007, p. 130) um experimento é conceituado como o método de pesquisa explicativa em que o pesquisador intervém na amostra, impondo deliberadamente os níveis de uma ou mais características explicativas com o propósito de derivar inferências aos efeitos causais dessas características sobre características respostas. Essas características explicativas são denominadas características de tratamento e seus níveis, tratamentos. Um fator experimental inerente aos unidades que se manifesta fora do controle do pesquisador ou sob seu controle limitado é uma característica estranha.

2.1.2 Material experimental

O material experimental compreende as três classes de características da amostra, isto é, características respostas, características explicativas e as características estranhas (SILVA, 2007, p. 166).

2.1.3 Fator experimental

Segundo Zimmermann (2004, p. 26), o fator experimental é aquilo que se aplica em um ensaio de forma não homogênea. Para Silva (2007, p. 161) um fator experimental cujos níveis são assinalados às unidades da amostra por um processo objetivo aleatório é um fator experimental, tendo as seguintes propriedades:

- i) são escolhidos e definidos no plano do experimento para cada unidades da amostra;
- ii) compreendem um pequeno conjunto de níveis que se repetem nessas unidades;
- iii) classificam as unidades em grupos que constituem uma partição da amostra com a propriedade de cada unidade pertencer a um grupo e nenhuma unidade pertencer a mais de um grupo; e
- iv) as relações com os níveis dos demais fatores experimentais constituem uma estrutura significativa que determina a estrutura do experimento ou delineamento experimental.

2.1.4 Nível

Segundo Zimmermann (2004, p. 26), os níveis são as diferentes manifestações de um fator.

2.1.5 Tratamento

Segundo Banzatto e Kronka (2006, p. 1) é um termo genérico que é utilizado para designar o método, elemento ou material cujo efeito deva ser medido ou comparado em um experimento. Para Zimmermann (2004, p. 26), tratamento é cada um dos níveis de um fator ou cada uma das combinações dos níveis dos fatores, quando testando mais de um fator. Já para Silva (2007, p. 161) cada nível específico de um fator de tratamento definido para a amostra é um tratamento. No caso de experimento com dois ou mais fatores experimentais de tratamento, cada combinação distinta dos níveis desses fatores definida para a amostra também é um tratamento.

2.1.6 Testemunha

Tratamento padrão de comparação. Pode ser a ausência do fator (dose zero de um adubo, por exemplo), ou a aplicação usual do fator (cultivar recomendada para cultivo na região, espaçamento adotado pelos agricultores, etc) (ZIMMERMANN, 2004, p. 26).

2.1.7 Parcela ou unidade experimental

E a unidade que vai receber tratamento e fornecer os dados que deverão refletir seu efeito (BANZATTO; KRONKA, 2006, p. 1).

De forma mais precisa, Silva (2007, p. 167) menciona que o termo "unidade" tem vários significados que pelas suas importâncias devem ser distinguidos e definidos precisamente, isto é, a unidade experimental para um fator de tratamento é a maior fração do material a qual é feita uma aplicação simple de um nível desse fator por um processo aleatório. A unidade experimental para um fator intrínseco é a maior fração do material experimental que determina ou manifesta um nível desse fator. Genericamente, a unidade experimental para um fator fração do material experimental para um fator um fator intrínseco é a maior fração do material experimental para um fator experimental é a maior fração do material experimental à qual é alocado ou que manifesta um nível desse fator, independentemente de qualquer outra fração. Um conjunto de unidades experimentais que não têm frações do material experimental em comum e conjuntamente constituem o material experimental é uma formação de unidades experimentais.

2.1.8 Delineamento experimental

O esquema adotado para a distribuição dos tratamentos (ZIMMERMANN, 2004, p. 26). Para (BANZATTO; KRONKA, 2006, p. 1), é o plano utilizado na experimentação e implica na

forma como os tratamentos serão designados às unidades experimentais, além de um amplo atendimento das análises a serem feitas quando todos os dados estiverem disponíveis.

2.1.9 Área útil

É a parte central da parcela onde é feita a coleta dos dados experimentais, os quais serão submetidos a análises estatísticas. Trabalhar com a área útil é melhor, pois: evita a influência do tratamento na parcela vizinha; e os dados coletados são mais reais no que está acontecendo no campo.

2.1.10 Bordaduras

São as fileiras de proteção. Elas têm a finalidade de evitar influências sobre a parcela dos tratamentos aplicados nas parcelas vizinhas.

2.1.11 Área total

A área total será:

2.1.12 Erro experimental

A variação dos valores de uma característica resposta nas unidades de observação que é atribuível às características estranhas constitui o erro experimental (SILVA, 2007, p. 173). Assim, o erro experimental é a fração da variação dos valores observados da variável resposta que exprime o confundimento dos efeitos das características explicativas com efeitos de características estranhas.

2.2 Princípio básicos da experimentação

Num experimento, medidas são feitas para representar o efeito dos tratamentos. Porém, esses efeitos há duas características envolvidas: características explicativas e características estranhas. Essa última característica está sujeita a erros ou variações que não são controladas pelo pesquisador. Assim, para a minimização desses erros, devem-se escolher delineamentos adequados para controlar essas variações. Assim, os delineamentos são estruturados segundo alguns princípios básicos da experimentação, dos quais temos a casualização, a repetição e o controle experimental.

2.2.1 Casualização

O controle da atribuição dos níveis de características de tratamentos às unidades da amostra deve ser exercido através de algum processo que garanta a ausência de confundimento tendencioso dos efeitos atribuíveis a essas características com efeitos de características estranhas. Essa garantia é provida pela casualização, isto é, algum processo objetivo de sorteio que atribua a todos os unidades da amostra a mesma chance de receber qualquer dos tratamentos (SILVA, 2007, p. 135).

2.2.2 Repetição

Refere-se a implantação de cada tratamento em mais de uma unidade experimental (ZIMMER-MANN, 2004, p. 27). Para Silva (2007, p. 169), unidades experimentais distintas com uma mesma condição experimental constituem repetições dessa condição experimental. O número de unidades experimentais com uma mesma condição experimental é o número de repetições dessa condição experimental.

2.2.3 Controle experimental

Segundo Silva (2007, p. 173) é o conjunto das ações exercidas pelo pesquisador para o controle do erro experimental.

2.2.3.1 Controle de técnicas experimentais

O controle de técnicas experimentais é o controle físico da amostra, exercido com o propósito de diminuir a variação dos valores observados de variáveis respostas que é atribuível a características estranhas (SILVA, 2007, p. 175).

2.2.3.2 Controle local

Está associado ao conhecimento do ambiente experimental e consiste na divisão das parcelas experimentais em subconjuntos homogêneos, quando é sabido que total das unidades experimentais não possui a homogeneidade exigida (ZIMMERMANN, 2004, p. 27).

Silva (2007, p. 175) é o processo de controle experimental para tornar não tendencioso o confundimento dos efeitos de características estranhas não controladas por controle de técnicas experimentais, controle local e controle estatístico com os efeitos dos fatores experimentais, de modo que os efeitos dessas características estranhas não fiquem confundidas com efeitos importantes dos fatores experimentais e sejam separados do erro experimental que afeta esses efeitos. Embora na prática a casualização seja procedida pela atribuição aleatória dos tratamentos às unidades experimentais, sob o ponto de vista conceitual é mais conveniente pensá-la como a assinalação das unidades experimentais aos tratamentos.

Para Zimmermann (2004, p. 27), ao conjunto de parcelas homogêneas denomina-se o nome de bloco. Quando o bloco contém todos os tratamentos de uma só vez, chama-se bloco completo. Quando isso não ocorre, isto é, os blocos contemplam parte dos tratamentos, diz-se que são blocos incompletos.

2.2.3.3 Controle estatístico

Assim como no controle local, o controle estatístico que não afeta a manifestação de características estranhas, pode ser definido como o registro de valores observados de uma ou mais variáveis que exprimem características estranhas relevantes da amostra e sua utilização para o ajustamento apropriado de valores observados de variáveis respostas pela eliminação da variável atribuível a essas características estranhas Silva (2007, p. 177). As variáveis estranhas consideradas para o controle estatístico são comumente denominadas covariáveis. Esse processo de controle experimental é efetivado através do procedimento de análise estatística denominado análise de covariância.

Uma característica estanha que é levada em conta pelo controle local é denominada fator de unidade. Os níveis desse fator de unidade são os níveis dessa característica estranha.

2.3 Implicações do controle experimental

De acordo com a tabela 2.1, tem-se as implicações dos procedimentos de controle para a constituição da amostra e para o erro experimental que afeta efeitos de fatores experimentais (SILVA, 2007, p. 180).

Tabela 2.1: Implicações dos procedimentos de controle experimental para a constituição da amostra e o erro experimental que afeta efeitos de fatores experimentais.

		Erro experimental que afeta			
Procedimento	Constituição	efeitos de fatores experiment			
	da amostra	Grandeza	Não tendenciosidade		
Controle de técnicas experimentais	Afeta	Afeta	Afeta		
Controle local	Não afeta	Afeta	Não afeta		
Controle estatístico	Não afeta	Afeta	Não afeta		
Casualização	Não afeta	Não afeta	Afeta		

Observe que o controle de técnicas experimentais permite tornar constante ou reduzir a variabilidade de características estranhas do material experimental. Assim, esse procedimento de controle experimental tem implicação sobre a constituição da amostra, como também na grandeza e não tendenciosidade, já que ele pode ser implementado para a redução da variação da amostra que não tenha implicação para a representação da população objetivo, ou seja, a fração das características estranhas assim controlada é excluída do conjunto das características estranhas que constituem a amostra.

O controle local e o controle estatístico não afetam a constituição da amostra. Esses procedimentos permitem separar da variação dos valores observados da variável resposta que é atribuível a efeitos de fatores experimentais e do erro experimental que afeta inferências referentes a esses efeitos a parte da variação que é atribuível às características estranhas controladas. A implicação desses dois processos é que perdem informação sobre o erro experimental, o que restringe suas aplicabilidades a um número reduzido de características estranhas.

A casualização não afeta a constituição da amostra e nem separa da variação dos valores da variável resposta e do erro experimental qualquer variação atribuível a características estranhas. A casualização permite que o confundimento dos efeitos de tratamento com efeitos de características estranhas que não foi controlado por aqueles outros processos de controle experimental seja não tendencioso.

O pesquisador deve utilizar o controle de técnicas experimentais para procurar excluir da amostra todas as características estranhas relevantes que possam ser submetidas a esse processo de controle experimental. Assim, a amostra compreende, de fato, as três seguintes classes de características:

- i) características respostas,
- ii) características explicativas e
- iii) características estranhas, excluídas as características controladas por técnicas experimentais.

As características estranhas relevantes remanescentes na amostra devem ser controladas por controle local ou por controle estatístico, a essas características chamamos de características estranhas controladas. As demais características estranhas da amostra, teoricamente, devem ser efetiva e operacionalmente casualizadas, constituindo a classe das características estranhas. Em situações reais, entretanto, muitas características estanhas não são sujeitas a esses processos de controle experimental, ou seja, a controle local, controle estatístico e casualização. Essas características constituem a classe das características estranhas potencialmente perturbadoras.

O erro experimental que afeta inferências referentes a efeitos de fatores experimentais é constituído pelas características estranhas casualizadas e as características estranhas potencialmente perturbadoras. Em geral, é esperado que as características desta última classe não tenham efeitos relevantes e que, portanto, seus efeitos sobre as variáveis respostas resultem confundidos de modo não tendencioso com efeitos dos fatores experimentais, ou seja, é esperado que essas características se comportem como características casualizadas. por essa razão, o erro experimental também é usualmente denominado erro aleatório ou erro casual. Essa é uma pressuposição importante a validade, ou seja, a não tendenciosidade das inferências derivadas do experimento.

Capítulo 3

Exemplos Resolvidos

Este capítulo abordará exemplos de experimentos tanto para dados balanceados quanto para dados desbalanceados, tentando buscar problemas dos mais diversos possíveis. A solução dos problemas será de quatro tipos:

- a) Analítica;
- b) Sisvar;
- c) R e
- d) SAS.

A ideia é mostrar uma análise completa: planejamento, sorteio das parcelas, delineamento, pressuposições, finalizando a análise no software a sua escolha. Isso servirá de base para futuras consultas na análise experimental.

3.1 Delineamentos Inteiramente Casualizados

O delineamento inteiramente casualizado (DIC) é o mais simples dentre os que serão citados, em que a área experimental deve ser a mais homogênea possível. Assim, os tratamentos são dispostos aleatoriamente nessa área.

3.1.1 Exemplo sobre o peso médio final (Kg) de peixes

Neste exemplo, iremos apresentar as soluções mostrando apenas a análise de variância, servindo de base para os demais exemplos para Delineamentos Inteiramente Causalizados.

Exemplo 3.1: Delineamento Inteiramente Casualizados

Abaixo estão os dados de Peso Médio Final (Kg) em um experimento com diferentes aditivos (A, B, C e D) utilizados na ração para peixes. Foram utilizados 12 tanques de 500 litros com 20 peixes em cada um.

0,93 (D)	1,40~(C)	1,12~(B)	1,21 (D)
1,04~(A)	0,98 (B)	1,14~(B)	1,14~(A)
1,22~(C)	1,33~(A)	1,16 (D)	1,24~(C)

A primeira análise abordada é de forma analítica, demonstrado abaixo.

3.1.1.1 Solução analítica

Solução:

Levantando as hipóteses, temos:

- H_0 : Os aditivos na ração de peixes têm mesmo efeito no peso médio final (Kg) desses animais;
- H_a : Pelo menos dois aditivos na ração de peixes apresentam efeito de peso médio final (Kg) diferentes desses animais.

Vamos apresentar os dados de produção (Kg/parcela) das quatro variedades de alho, por meio de uma tabela simplificada:

	REPETIÇÕES						
TRATAMENTOS	Ι	II	III	TOTAIS			
A	1,04	1,14	1,33	3,51			
В	$1,\!12$	$0,\!98$	$1,\!14$	$3,\!24$			
\mathbf{C}	$1,\!40$	$1,\!22$	$1,\!24$	$3,\!86$			
D	0,98	1,21	1,16	$3,\!30$			

A partir de agora, iremos desenvolver a análise de variância. Calculando inicialmente a correção, temos:

$$C = G^2/IJ$$

= 13,91²/12
= 16,12401.

Posteriormente, as somas de quadrados:

$$SQ_{tot} = (1, 04^2 + 1, 14^2 + ... + 1, 21^2 + 1, 16^2) - C$$

= 16, 3251 - C
= 0, 2011.
$$SQ_{trat} = \frac{1}{3}(3, 51^2 + 3, 24^2 + 3, 86^2 + 3, 30^2) - C$$

= 16, 20243 - C
= 0, 0784.

$$SQ_{res} = SQ_{tot} - SQ_{trat}$$
$$= 0, 1227.$$

•

Fazendo a tabela de análise de variância, temos:

Tabela 1: Análise de variância do peso médio final (Kg) de peixes.

FV	GL	SQ	QM	Teste F	F tab	Valor-p
Tratamentos	3	0,0784	0,0261	$1,71^{NS}$	4,07	0,2417
Resíduo	8	$0,\!1227$	$0,\!153$	-	-	
TOTAL	11	0,2011	-	-	-	

Percebemos pela análise de variância o efeito dos aditivos na ração apresentam mesmo efeito de peso médio final (Kg), ao nível de significância de 5% de probabilidade.

A precisão do experimento é calculado da seguinte forma:

$$CV = \frac{\sqrt{QME}}{MG} \times 100,$$

sendo MG a média geral do experimento, isto é,

$$MG = \frac{3,51+3,24+3,86+3,30}{12} \\ = 1,16kg,$$

e QMEo quadrado médio do resídu
o calculado anteriormente. Assim, o CV é calculado

$$CV = \frac{\sqrt{0,0153}}{1,16} \times 100$$

= 10,68%.

O experimento apresenta boa precisão, pois $10 < CV \le 20\%$.

Após a solução analítica, iremos proceder nas rotinas, como apresentado a seguir.

3.1.1.2 Usando o R - Criando as rotinas

A solução dessa análise feita criando as linhas de comando, ajudam didaticamente à compreensão da solução analítica, auxiliando nas aulas de Estatística Experimental.

Capítulo 3. Exemplos Resolvidos -

```
APOSTILA/exemplos-resolvidos/exem-dic-peixe")
>
> #carregando os dados:
>
> dados <- read.table("peixe.txt",h=T,dec=",")</pre>
      #h=T - existe cabeçalho
>
      #dec="," - a decimal é separado por ","
>
> dados
  racao peso
     A 1.04
1
2
      A 1.33
3
      A 1.14
4
      B 1.12
5
     B 0.98
6
     B 1.14
7
      C 1.40
8
      C 1.22
9
      C 1.24
10
      D 0.93
11
      D 1.21
12
      D 1.16
> #
> #transformando tratamentos e blocos em fatores:
> dados$racao <- as.factor(dados$racao)</pre>
>
> #abrindo o objeto "dados":
> attach(dados)
> #-----
> #calculando totais de tratamentos:
> tot.trat <- tapply(peso,racao,sum);tot.trat</pre>
  Α
       В
            С
                D
3.51 3.24 3.86 3.30
>
>
> #Total geral
> G <- sum(tot.trat);G
[1] 13.91
>
> options(digits=7)#arredondamento de 8 dígitos
>
> #correção:
> C <- G<sup>2</sup>/length(peso);C
[1] 16.12401
> #-----
> #Graus de liberdade
>
> gltrat <- 3
> glres <- 8
```

```
> gltot <- 11
> #-----
                   _____
> #Somas de quadrado:
> sqtrat <- round(1/3*sum(tot.trat<sup>2</sup>)-C,4);sqtrat
[1] 0.0784
> sqtot <- round(sum(peso^2)-C,4);sqtot</pre>
[1] 0.2011
> sqres <- round(sqtot-sqtrat,4);sqres</pre>
[1] 0.1227
> #-----
> #Quadrado médio:
> qmtrat <- round(sqtrat/gltrat,4);qmtrat</pre>
[1] 0.0261
> qmres <- round(sqres/glres,4);qmres</pre>
[1] 0.0153
>
> #Teste F - tabelado
> ftabtrat <- round(qf(0.95,gltrat,glres),2);ftabtrat</pre>
[1] 4.07
>
> #Teste F - calculado
> ftrat <- round(qmtrat/qmres,2);ftrat</pre>
[1] 1.71
>
> #Valor-p do teste F
> ptrat <- round(pf(ftrat,gltrat,glres,lower.tail=FALSE),4);ptrat</pre>
[1] 0.2417
>
> #QUADRO RESUMO DA ANAVA
>
> FV
      <- c("Trat","Res","Total")
> GL <- c(gltrat,glres,gltot)
> SQ
      <- c(sqtrat,sqres,sqtot)</pre>
> QM <- c(qmtrat,qmres,"-")
> Fcalc <- c(ftrat,"-","-")
> Ftab <- c(ftabtrat,"-","-")</pre>
> pvalue <- c(ptrat,"-","-")</pre>
> #
>
> quadres <-data.frame(FV,GL,SQ,QM,Fcalc,Ftab,pvalue);quadres</pre>
_____
    FV GL SQ QM Fcalc Ftab pvalue
  _____
  Trat 3 0.0784 0.0261 1.71 4.07 0.2417
   Res 8 0.1227 0.0153
                       _ _
    _____
```

Capítulo 3. Exemplos Resolvidos •

```
Total 11 0.2011 - - - - -

>
#------
#Coeficiente de Variacao
> CV = sqrt(qmres)/mean(peso)*100; round(CV,2)
[1] 10.68
```

Essa análise no R, foi desenvolvida sem o uso de pacotes prontos. Dessa forma, podemos didaticamente apresentar como calcular o quadro da análise de variância. Entretanto, com o uso de pacotes prontos no R, esses comandos podem ser resumidos em apenas uma linha de comando com a função **aov()** da base do R, como será feito a seguir.

3.1.1.3 Usando o R - Rotinas de pacotes

Os pacotes desenvolvidos no R, tentam resumir as linhas de comando para a solução do problema. Perceberemos isso, no próximo código apresentado.

Percebemos que o comando **aov()**, não apresenta a soma de quadrados total e o CV. Pode ser considerado uma limitação. Os argumentos da função, é usar a variável dependente antes do til (~), que no nosso caso é **peso**, e após o til, a variável independente, **racao**. Caso essas variáveis estejam dentro de algum objeto, é necessário informar ao argumento **data**. Nossas variáveis se encontram no objeto **dados**, assim, **data = dados**. Um outro pacote interessante, é o **ExpDes** (versão em português **ExpDes.pt**). Algo bem interessante nesse pacote, é que o resultado das funções são bem similares a saída do Sisvar. A seguir é apresentado o comando.

```
> dic(trat=racao, resp=peso, quali = TRUE, mcomp = "tukey",
+ sigT = 0.05, sigF = 0.05)
 _____
Quadro da analise de variancia
     _____
              SQ
                   QM
        GL
                         Fc Pr>Fc
Tratamento 3 0.078425 0.026142 1.7049 0.24274
       8 0.122667 0.015333
Residuo
Total
       11 0.201092
_____
CV = 10.68 \%
_____
Teste de normalidade dos residuos (Shapiro-Wilk)
p-valor: 0.7659358
De acordo com o teste de Shapiro-Wilk a 5% de significancia, os
residuos podem ser considerados normais.
De acordo com o teste F, as medias nao podem ser consideradas diferentes.
 Niveis
        Medias
    A 1.170000
1
2
     B 1.080000
3
     C 1.286667
4
     D 1.100000
```

Os argumentos desse comando, são simples. o Argumento trat, representa os tratamentos; resp, representa a variável resposta; quali, representa um argumento lógico para identificar se os tratamentos são entendidos como qualitativos, portanto, quali=TRUE, ou quantitativos, quali=FALSE; mcomp permite escolher qual o teste de comparação de médias que se deseja utilizar, por default, é usado o teste Tukey; sigT, representa o nível de significância utilizado para o teste de comparação múltipla, e sigF o nível de significância adotado pelo teste F da Anava.

Outra vantagem desse pacote, é a saída do teste de normalidade (Shapiro-Wilk) para o resíduo, para verificar se este tem distribuição normal ou não. Veremos que os resultados desse pacotes, são semelhantes ao Sisvar, como será visto a seguir.

3.1.1.4 Usando o SISVAR

O Sisvar é um software diferente do R, pois não precisa digitar as linhas de comando, bastando seguir os passos.

Sisvar:

Entrada de dados com a extensão aquivo.dbf, usando o programa BrOffice.org Calc. Inicialmente, a estrutura do arquivo para esse exemplo é dado a seguir.

	A	В
1	racao	peso
2	Α	1,04
3	А	1,33
4	А	1,14
5	В	1,12
6	В	0,98
7	В	1,14
8	С	1,40
9	С	1,22
10	С	1,24
11	D	0,93
12	D	1,21
13	D	1,16

OBS.: A coluna ração se refere aos aditivos na ração de peixes.

Após digitado os dados, segue a exportação do arquivo do BrOffice para a extensão <>.dbf: Arquivo > Salvar como... > Salvar em: escolher o diretório > Tipo:dBASE(.dbf) > Nome: peixe.dbf > Abrir. O arquivo está pronto para a análise no Sisvar. Lembre-se que não há restrição quanto separação em casas decimais se é vírgula ou ponto, oSisvar consegue reconhecer.

Usando o sisvar, segue os passos:

 ${\bf Passo 1: Sisvar > Análise > Anava. }$

Passo 3: ...> Abrir arquivo > peixe.dbf.

Passo 4: Com o arquivo **peixe.dbf** aberto no Sisvar, percebemos que as variáveis do arquivo são: **RACAO** (A, B, C e D) equivalente aos aditivos, e **PESO** (variável resposta, referente ao peso médio final (Kg) de peixes).

Passo 5: Adicionando a variável RACAO: em variáveis do arquivo, selecione a variável RACAO (1), e posteriormente, clique no botão Adicionar no Sisvar ou Enter no teclado (2). Depois de adicionado, a variável torna-se visível em Tabela de análise de variância (3).

Passo 6: Para finalizarmos, basta apertar o botão Fim, do qual, abrirá uma janela perguntando: "Quer encerrar o quadro de análise de variância?". Em seguida, clique em
Yes e em seguida OK (em opções do quadro da análise de variância).

RACAO		erro= I	-im Adi
		Abrir arquivo	Fechar ar
		Variáveis d	o arquivo
		PES0	
Confirm		×	
Quer ence	errar o quadro de análise de variância?		
#	Yes No		
Clíque e sig	ka para		
o proxime	-passo.		
Limpar Remover	Digite as Fontes de Va	ariação	

Passo 7: Nesse penúltimo passo, temos que agora apenas inserir a variável resposta. Dessa forma, clique em PESO e finalize a análise Finalizar.

Passo 8: Antes de finalizar a análise, é perguntado se deseja fazer transformação nos dados. Isso ocorre, quando o resíduo não atende às pressuposições da análise de variância. Nesse caso, não iremos fazer transformação. Portanto, clique em Finalizar.

Ao final de todos esses passos, é exibido um relatório com todas as análises escolhidas.

Variável analisao Opção de transfor	da: PESO rmação: Variável	sem transformaç	ãо (Y)						
	TABELA DE ANÁLISE DE VARIÂNCIA								
FV	GL	SQ	QM	Fc	Pr>Fc				
RACAO erro	3 8	0.078425 0.122667	0.026142 0.015333	1.705	0.2427				
Total corrigido	11	0.201092							
CV (%) = Média geral:	10.68 1.1591667	Número de ob	servações:	12					

OBS.: Observe que não foi sugerido um teste de médias, pois já sabíamos da não significância do teste F.

3.1.1.5 Usando o SAS - Criando as rotinas

Para realizar as análises no programa SAS a macro apresentada a seguir servirá de roteiro.

```
Macro SAS:
```

```
title 'Analise de Variancia do peso medio final (kg) de peixes';
Options PS=500 LS=75 nodate no number;
*Dados do experimento chamado 'dados';
Data dados;
input racao $ peso @@;
cards;
A 1.04 C 1.40
A 1.33 C 1.22
A 1.14 C 1.24
B 1.12 D 0.93
B 0.98 D 1.21
B 1.14 D 1.16
Proc Anova data = dados;
  Class racao;
  Model peso = racao;
Run;Quit;
RESULTADO:
     Analise de Variancia do peso medio final (kg) de peixes
                                      The ANOVA Procedure
Dependent Variable: peso
                              Sum of
Source
                  DF
                              Squares
                                           Mean Square
                                                          F Value
                                                                      Pr > F
                           0.07842500
                                                             1.70
                                                                      0.2427
Model
                   3
                                            0.02614167
                           0.12266667
                                            0.01533333
Error
                   8
                           0.20109167
Corrected Total
                  11
             R-Square
                           Coeff Var
                                           Root MSE
                                                        peso Mean
             0.389996
                            10.68249
                                           0.123828
                                                         1.159167
Source
                  DF
                             Anova SS
                                           Mean Square
                                                          F Value
                                                                      Pr > F
                           0.07842500
                                            0.02614167
racao
                   3
                                                              1.70
                                                                      0.2427
```

Para o entendimento do programa, vamos inicialmente observar que cada linha de comando termina com ";", e que linhas comentadas iniciam-se com "*". A primeira linha de comando apresenta o título da análise. A segunda linha de comando Options informa ao SAS que o tamanho das páginas é igual a 500, o tamanho das linhas é de 75 caracteres e que esse não deve imprimir na tela de saída as datas e os números das telas de saídas. A próxima linha de comando Data informa que será criado um conjunto de dados com o nome dados. Em seguida vem a linha Input, que informa ao SAS, quais são as colunas do conjunto de dados, que no

nosso caso, é racao e peso. Observe que após a variável racao apareceu o símbolo \$, para indicá-la do tipo alfanumérica (A, B, C e D). Os símbolos @@ indicam que as colunas poderão ser quebradas digitando-as nas linhas da forma que o usuário quiser, sempre obedecendo a ordem das variáveis do Input. Em seguida é o comando Cards que indica que os dados virão a seguir, e em seguida os dados observados, terminando com ";" no final. O procedimento para a análise de variância é do tipo proc Anova seguido do conjunto de dados data=dados. Todas as variáveis que aparecem no modelo de análise de variância devem aparecem no comando Class, que nesse caso, apareceu apenas racao. Após isso, é identificado o modelo, com todas as variáveis dependentes a esquerda da igualdade (peso) e o modelo a sua direita (racao).

3.2 Delineamento em Blocos Casualizados

O delineamento em blocos casualizados é considerado um dos mais importante na pesquisa científica, já que tem o objetivo de eliminar a variação residual de natureza heterogênea do material experimental, subdividindo em frações mais uniformes e aplicando em cada uma delas todos os tratamentos. A seguir, é apresentado exemplos desse delineamento.

3.2.1 Exemplo sobre a produtividade (Kg/parcela) de variedades de alfafa

Neste exemplo, iremos apresentar as soluções mostrando a análise de variância e um teste de comparação de médias, servindo de base para os demais exemplos para o delineamento em blocos casualizados.

Exemplo 3.2: Delineamento em Blocos Casualizados

Produtividade (Kg/parcela) de um experimento com uma variedade de alfafa onde foram testadas quatro épocas de corte (A, B, C e D, sendo A mais precoce e D mais tardia). Foi utilizado o delineamento Blocos Casualizados com 6 repetições. Os blocos foram utilizados para controlar possíveis diferenças de fertilidade do solo já que a área experimental apresentava uma declividade de 12%. (Os dados estão apresentados no croqui do experimento, da maneira como foi instalado no campo).

Repetição I	1,58~(B)	2,56 (D)	2,29~(C)	2,89~(A)
Repetição II	2,98~(C)	2,88~(A)	2,00 (D)	1,28~(B)
Repetição III	1,22~(B)	1,55~(C)	1,88~(A)	1,82 (D)
Repetição IV	2,90~(A)	2,20~(D)	1,95~(C)	1,21~(B)
Repetição V	1,15~(C)	1,30~(B)	1,33~(D)	2,20~(A)
Repetição VI	1,00~(D)	2,65~(A)	1,66~(B)	1,12~(C)

Inicialmente, iremos apresentar a primeira solução de forma analítica, apresentado a seguir.

3.2.1.1 Solução analítica

Solução:

Levantando as hipóteses, temos:

 H_0 : As épocas de corte de alfafa têm mesma produtividade em Kg/parcela;

-0

 H_a : Pelo menos duas épocas de corte de alfafa apresentam efeitos diferentes na produtividade em Kg/parcela.

Vamos apresentar os dados de produção (Kg/parcela) das quatro variedades de alho, por meio de uma tabela simplificada:

		BLOCOS						
TRATAMENTOS	Ι	II	III	IV	V	VI	TOTAIS	
А	2,89	2,88	1,88	2,90	2,20	$2,\!65$	15,40	
В	$1,\!58$	$1,\!28$	$1,\!22$	1,21	$1,\!30$	$1,\!66$	8,25	
\mathbf{C}	$2,\!29$	$2,\!98$	$1,\!55$	$1,\!95$	$1,\!15$	$1,\!12$	11,04	
D	$2,\!56$	$2,\!00$	$1,\!82$	$2,\!20$	$1,\!33$	$1,\!00$	10,91	
TOTAIS	9,32	9,14	6,47	8,26	5,98	6,43	G = 45,00	

A partir de agora, iremos desenvolver a análise de variância. Calculando inicialmente a correção, temos:

$$C = G^2/IJ = 45,00^2/24 = 86,64.$$

Posteriormente, as somas de quadrados:

$$SQ_{tot} = (2, 89^2 + 2, 88^2 + \ldots + 1, 33^2 + 1, 00^2) - C$$

= 96, 3676 - C
= 9, 7276.

$$SQ_{trat} = \frac{1}{6}(15, 40^2 + 8, 25^2 + 11, 04^2 + 10, 91^2) - C$$

= 91,0222 - C
= 4,3820.

$$SQ_{bloc} = \frac{1}{4}(9, 32^2 + 9, 14^2 + \ldots + 5, 98^2 + 6, 43^2) - C$$

= 89,3990 - C
= 2,7589.

$$SQ_{res} = SQ_{tot} - SQ_{trat} - SQ_{bloc}$$

= 2,5867.

A valor dos quadrados médios são encontrados pela razão entre a soma de quadrados e o grau de liberdade da fonte de variação em análise.

Fazendo a tabela de análise de variância, temos:

Tabela 1: Análise de variância da produtividade em kg/parcela das épocas de corte

			de alfafa.			
FV	GL	SQ	QM	Teste F	F tab	Valor-p
Tratamentos	3	4,3820	1,4607	$8,47^{*}$	3,29	0,0016
Blocos	5	2,7589	$0,\!5518$	$3,20^{*}$	$2,\!90$	0,0365
Resíduo	15	2,5867	0,1724	-	-	-
TOTAL	23	9,7276	-	-	-	-

Percebemos pela análise de variância, que pelo menos duas épocas de corte de alfafa apresentaram produtividades (Kg/parcela) diferentes, ao nível de significância de 5% de probabilidade.

A precisão do experimento é calculado da seguinte forma:

$$CV = \frac{\sqrt{QME}}{MG} \times 100, \qquad (3.1)$$

sendo MG a média geral do experimento, isto é,

$$MG = \frac{2,57+1,84+1,82+1,38}{4}$$

= 1,90 kg/parcela.

Assim, o CV é calculado

$$CV = \frac{\sqrt{0,1724}}{1,90} \times 100 \tag{3.2}$$

$$= 21,85\%.$$
 (3.3)

O experimento apresenta boa precisão, pois $10 < CV \leq 20.$

No estudo das médias os testes de comparações múltiplas usaremos o teste Tukey, já que o test F foi significativo para o efeito dos tratamentos.

Fazendo o estudo do teste Tukey, calculemos a DMS:

$$DMS = q_{4,15gl.} \times \sqrt{\frac{QME}{J}} \\ = 4,08 \times \sqrt{\frac{0,1724}{6}} \\ = 0,69.$$

Fazendo a tabela de médias, temos:

Tabela 2: Produtividade (Kg/parcela) das épocas de corte de alfafa.				
Tratamentos	Médias	Teste Tukey		
A	2,57	a		
\mathbf{C}	$1,\!84$	b		
D	1,82	b		
В	1,38	b		

(*) As médias seguidas de mesma letra, não diferem entre si estatisticamente, ao nível de significância de 5% de probabilidade.

De acordo com o teste Tukey, ao nível de significância de 5% de probabilidade, conclui-se que a época de corte A de alfafa, apresenta maior produtividade (Kg/parcela)

Para comprovar os resultados, iremos apresentar essa solução nos softwares. Inicialmente, começaremos pelo R, criando as rotinas.

3.2.1.2 Usando o R - Criando as rotinas

Essas rotinas criadas têm o objetivo de mostrar didaticamente como resolver a análise de variância.

```
Código R: Criando as rotinas
> #exemplo do experimento p/ prod de var de alfafa
> #mudando diretorio:
> setwd("D:/PROJETOS/EXPERIMENTAL/EXPERIMENTAL -
        APOSTILA/exemplos-resolvidos/exem-dbc-alfafa")
> #carregando os dados:
> dados <- read.table("alfafa.txt",h=T,dec=",")</pre>
> #h=T - existe cabeçalho
> #dec="," - a decimal é separado por ","
> dados
  TRAT BLOCO PROD
     Α
          I 2.89
1
2
          II 2.88
     Α
3
         III 1.88
     А
          IV 2.90
4
     А
5
          V 2.20
     Α
          VI 2.65
6
     Α
7
     В
          I 1.58
8
     В
          II 1.28
         III 1.22
9
     В
         IV 1.21
10
     В
              .
     .
          .
> #transformando tratamentos e blocos em fatores:
> dados$TRAT <- as.factor(dados$TRAT)</pre>
> dados$BLOCO <- as.factor(dados$BLOCO)</pre>
```

Capítulo 3. Exemplos Resolvidos -

```
> #abrindo o objeto "dados":
> attach(dados)
> #-----
                         _____
> #calculando totais de blocos:
> tot.bloc <- tapply(PROD,BLOCO,sum);tot.bloc</pre>
              IV V VI
  Ι
      II III
9.32 9.14 6.47 8.26 5.98 6.43
> #calculando totais de tratamentos:
> tot.trat <- tapply(PROD,TRAT,sum);tot.trat</pre>
              С
   А
         В
                    D
15.40 8.25 11.04 10.91
> #Total geral
> G <- sum(tot.trat);G</pre>
[1] 45.6
> #G <- sum(tot.bloc);G</pre>
> options(digits=8)#arredondamento de 8 dígitos
> #correção:
> C <- G<sup>2</sup>/length(PROD);C
[1] 86.64
> #-----
                    ------
> #Graus de liberdade
> gltrat <- length(levels(TRAT))-1;gltrat</pre>
[1] 3
> glbloc <- length(levels(BLOCO))-1;glbloc</pre>
[1] 5
> gltot <- length(levels(TRAT))*length(levels(BLOCO))-1;gltot</pre>
[1] 23
> glres <- gltot-gltrat-glbloc;glres</pre>
[1] 15
> #-----
> #Somas de quadrado:
> sqtrat <- round(1/length(levels(BLOCO))*sum(tot.trat^2)-C,4);sqtrat</pre>
[1] 4.382
> sqbloc <- round(1/length(levels(TRAT))*sum(tot.bloc<sup>2</sup>)-C,4);sqbloc
[1] 2.7589
> sqtot <- round(sum(PROD^2)-C,4);sqtot</pre>
[1] 9.7276
> sqres <- sqtot-sqtrat-sqbloc;sqres</pre>
[1] 2.5867
> #-----
> #Quadrado médio:
> qmtrat <- round(sqtrat/gltrat,4);qmtrat</pre>
[1] 1.4607
> qmbloc <- round(sqbloc/glbloc,4);qmbloc</pre>
[1] 0.5518
> qmres <- round(sqres/glres,4);qmres</pre>
[1] 0.1724
> #-----
```

```
> #Teste F - tabelado
> ftabtrat <- round(qf(0.95,gltrat,glres),4);ftabtrat</pre>
[1] 3.2874
> ftabbloc <- round(qf(0.95,glbloc,glres),4);ftabbloc</pre>
[1] 2.9013
> #Teste F - calculado
> ftrat <- round(qmtrat/qmres,4);ftrat</pre>
[1] 8.4727
> fbloc <- round(qmbloc/qmres,4);fbloc</pre>
[1] 3.2007
> #Valor-p do teste F
> ptrat <- round(pf(ftrat,gltrat,glres,lower.tail=FALSE),4);ptrat</pre>
[1] 0.0016
> pbloc <- round(pf(fbloc,glbloc,glres,lower.tail=FALSE),4);pbloc</pre>
[1] 0.0365
> #QUADRO RESUMO DA ANAVA
<- c("Trat", "Bloc", "Res", "Total")
> FV
> GL
         <- c(gltrat,glbloc,glres,gltot)
> SQ
         <- c(sqtrat,sqbloc,sqres,sqtot)
        <- c(qmtrat,qmbloc,qmres,"-")
> QM
> Fcalc <- c(ftrat,fbloc,"-","-")</pre>
        <- c(ftabtrat,ftabbloc,"-","-")
> Ftab
> pvalue <- c(ptrat,pbloc,"-","-")</pre>
> quadres <-data.frame(FV,GL,SQ,QM,Fcalc,Ftab,pvalue);quadres</pre>
     FV GL
               SQ
                      QM Fcalc
                                 Ftab pvalue
  Trat 3 4.3820 1.4607 8.4727 3.2874 0.0016
1
 Bloc 5 2.7589 0.5518 3.2007 2.9013 0.0365
2
    Res 15 2.5867 0.1724
3
                              _
4 Total 23 9.7276
                                      _
```

3.2.1.3 Usando o R - Rotinas de pacotes

Esta análise usará pacotes disponibilizados no CRAN. A primeira função utilizada será **aov()**. Essa função é da base do R, não precisando baixar pacote. Os seus argumentos já foram comentados na subseção 3.1.1.3. Para o cálculo do teste Tukey, foi utilizado os pacotes **mult-comp** e **agricolae**. Detalhes sobre as funções desses pacotes serão abordados na seção de teste de comparações múltiplas.

```
Código R: Usando os pacotes do R
```

```
> #Usando as rotinas prontas
```

```
> #ANAVA:
```

```
> anava <-aov(PROD~TRAT+BLOCO,data=dados)</pre>
```

```
> summary(anava)
```

Capítulo 3. Exemplos Resolvidos -

```
Df Sum Sq Mean Sq F value
                                      Pr(>F)
            3 4.3820 1.46068 8.4706 0.001572 **
TRAT
BLOCO
           5 2.7590 0.55179 3.1999 0.036559 *
Residuals 15 2.5866 0.17244
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> #-----
                                                             _____
> ############
> #Teste Tukey
> #############
> #pacotes
> #install.packages("multcomp")
> #install.packages("agricolae")
> library(multcomp)
> library(agricolae)
> Tuk <- HSD.test(PROD,TRAT,glres,qmres,alpha=0.05,</pre>
+ group=TRUE, main="efeito de épocas de corte
+ na produtividade (Kg/parcela) de alfafa");Tuk
$statistics
  Mean
             CV MSerror
                              HSD
   1.9 21.853199 0.1724 0.69091462
$parameters
  Df ntr StudentizedRange
  15
      4
           4.0759737
$means
      PROD
                 std r Min Max
A 2.5666667 0.43051907 6 1.88 2.90
B 1.3750000 0.19449936 6 1.21 1.66
C 1.8400000 0.72011110 6 1.12 2.98
D 1.8183333 0.57216839 6 1.00 2.56
$comparison
NULL
$groups
 trt
         means M
1 A 2.5666667 a
2
 C 1.8400000 b
3
  D 1.8183333 b
4 B 1.3750000 b
> #Gráfico de Tukey:
> THSD <- TukeyHSD(anava, wich="TRAT", ordered=TRUE, conf.level=0.95)
> plot(TukeyHSD(anava,"TRAT",ordered=T))
> abline(v=Tuk$statistics[4],col="red")
```


Com o pacote **ExpDes** (versão em português **ExpDes.pt**), apresentamos as rotinas a seguir.

```
Código R: Usando funções do ExpDes.pt
> #Usando as rotinas prontas: ExpDes.pt
> #Carregando o pacote ExpDes.pt
> require(ExpDes.pt)
> #carregando os dados:
> dados <- read.table("alfafa.txt",h=T,dec=",")</pre>
> #h=T - existe cabeçalho
> #dec="," - a decimal é separado por ","
> #transformando tratamentos e blocos em fatores:
> dados$TRAT <- as.factor(dados$TRAT)</pre>
> dados$BLOCO <- as.factor(dados$BLOCO)</pre>
> #abrindo o objeto "dados":
> attach(dados)
> #Rodando a rotina
> dbc(trat=TRAT, bloco=BLOCO, resp=PROD, quali = TRUE,
+ mcomp = "tukey", sigT = 0.05, sigF = 0.05)
Quadro da analise de variancia
 GL
                SQ
                       QM
                             Fc
                                   Pr>Fc
Tratamento 3 4.3820 1.46068 8.4706 0.001572
Bloco
         5 2.7590 0.55179 3.1999 0.036559
         15 2.5866 0.17244
Residuo
Total
         23 9.7276
CV = 21.86 \%
                                            _____
Teste de normalidade dos residuos (Shapiro-Wilk)
p-valor: 0.7947678
```

De acordo com o teste de Shapiro-Wilk a 5% de significancia, os residuos podem ser considerados normais.					
Teste de Tukey					
Grupos Tratamentos Medias					
a A 2.566667					
b C 1.84					
b D 1.818333					
b B 1.375					

3.2.1.4 Usando o SISVAR

Usando o Sisvar para resolver a ANAVA com o delineamento em blocos casualizados, perceberemos algumas alterações com relação aos passos. O primeiro acréscimo será adicionar às fontes de variação o tratamento TRAT e o bloco BLOCO. Posteriormente, terá mais um passo acrescentado que é o teste de comparação de médias. Nesse passo não entraremos muito em detalhes, pois haverá uma seção específica para esses testes. A seguir é apresentado os passos.

Sisvar:

Entrada de dados com a extensão aquivo.dbf, usando o programa BrOffice.org Calc. Inicialmente, a estrutura do arquivo para esse exemplo é dado a seguir.

	A	в	c
1	TRAT	BLOCO	PROD
2	Α	1	2,89
3	Α	11	2,88
4	Α	111	1,88
5	А	IV	2,90
6	Α	V	2,20
7	Α	VI	2,65
8	В	1	1,58
9	В	11	1,28
10	В	III	1,22
11	В	IV	1,21
12	В	V	1,30
13	В	VI	1,66
14	С	1	2,29
15	С	11	2,98
16	С	111	1,55
17	С	IV	1,95
18	С	V	1,15
19	С	VI	1,12
20	D	1	2,56
21	D	11	2,00
22	D	III	1,82
23	D	IV	2,20
24	D	v	1,33
25	D	VI	1,00

Após digitado os dados, segue a exportação do arquivo do BrOffice para a extensão <>.dbf: Arquivo > Salvar como... > Salvar em: escolher o diretório > Tipo:dBASE(.dbf) > Nome: alfafa.dbf > Abrir. O arquivo está pronto para a análise no Sisvar. Lembre-se que a separação em casas decimais é virgula.

Usando agora o sisvar, seguindo os passos:

Passo 1: Sisvar > Análise > Anava.
Sisva Sisva	r in the second se	
Arquivo	Análise Relatório Auxílio	
	Anava	
	Planos experimentais	Siever
	Estimador kernel de densidades	JISVAI
	Estatísticas descritivas	
	Shapiro Wilk	•
	Cálculo de probabilidade	
	Estimação	
	Testes de hipóteses	
	Regressão linear	
	Seleção de modelos	
1	Comparações múltiplas (bootstrap)	

•

Passo 2: ...> Anava > Abrir arquivo.

S TABELA DE ANÁLISE DE VARIÂNCIA	×
TABELA DE ANALISE DE VARIÁNCIA	,,,
	erro= Fim Adicionar
	* ()
	Abrir arquivo Fechar arquivo
7	Variáveis do arquivo
Limpar Remover Digite as Fontes de Variaçã	io
Ajuda	

Passo 3: ...> Abrir arquivo > alfafa.dbf.

Passo 4: Com o arquivo alfafa.dbf aberto no Sisvar, percebemos que as variáveis do arquivo são: TRAT (A, B, C e D), BLOCO (I, II, III, IV, V, VI) e PROD (variável resposta, referente a produtividade em Kg/parcela das épocas de corte de alfafa).

Passo 5: Adicionando a variável TRAT: em variáveis do arquivo, selecione a variável TRAT (1), e posteriormente, clique no botão Adicionar ou Enter (2). Depois de adicionado, a variável torna-se visível em Tabela de análise de variância (3).

Passo 6: Posteriormente, insere a variável BLOCO, da mesma forma que inserimos TRAT no **Passo 5**. Ao final desse passo, estamos prontos para terminar a adição de variáveis, já que em tabela de análise de variância temos as duas variáveis de interesse, como visto na figura abaixo.

Passo 7: Para finalizarmos, basta apertar o botão Fim, do qual, abrirá uma janela perguntando: "Quer encerrar o quadro de análise de variância?". Em seguida, clique em Yes, seguindo para o próximo passo.

TRAT BLOCO	erro= Fim Adicionar
Confirm X	Variáveis do arquivo
Que encerrar o quadro de análtez de varianda?	
Limpar Remover Digite as Fontes de Varia	ıção

Passo 8: Nesse passo, iremos escolher qual o teste de médias que será feito nos tratamentos. Nesse exercício, foi escolhido o teste Tukey ao nível de significância de 5% de probabilide. Assim, clique em **TRAT**, selecione o teste Tukey, indique o nível de significância: 0,05, e clique em **Ok** e **Ok**.

Opções do quadro da análise d Dê um clique duplo na FV par TRAT BLOCO	§ Escolha a opção da fonte de variação selecionada FV: TRAT	X
	Teste escolhido Nenhum teste Teste Tukey Teste Tukey Teste de tul Ponferroni Teste t (LSD) C Scott Knott C Contrastes C Regressão	
Ajuda	Ok Nível de significância: 0 05	

Passo 9: Nesse penúltimo passo, temos que agora apenas inserir a variável resposta. Dessa forma, clique em PROD e finalize a análise Finalizar.

Passo 10: Antes de finalizar a análise, é perguntado se deseja fazer transformação nos dados. Isso ocorre, quando o resíduo não atende às pressuposições da análise de

variância. Nesse caso, não iremos fazer transformação. Portanto, clique em Finalizar

Ao final de todos esses passos, é exibido um relatório com todas as análises escolhidas.

Variável analisad Opção de transfor	da: PROD mação: Variável	sem transformação) (ү)	
	TABELA DE ANA	ÁLISE DE VARIÂNCIA	4	
FV	GL	SQ	QM	Fc Pr>Fc
TRAT BLOCO erro	3 5 15	4.382033 2.758950 2.586617	1.460678 0.551790 0.172441	8.471 0.0016 3.200 0.0366
Total corrigido	23	9.727600		
CV (%) = Média geral:	21.86 1.9000000	Número de obse	ervações:	24
Teste Tukey par	a a FV TRAT			
DM5: 0,69122572747	74195 NM5: 0,05			
Média harmonica do Erro padrão: 0,169	o número de repet 9529304797681	tições (r): 6		
Tratamentos		Médias	Resultados do	o teste
B D C A		1.375000 a1 1.818333 a1 1.840000 a1 2.566667	a2	
1				

3.2.1.5 Usando o SAS - Criando as rotinas

Iremos apresentar a macro do SAS, para resolver a ANAVA para o delineamento em blocos casualizados.

Macro SAS: title 'Analise de Variancia sobre a produtividade (kg/parcela) de variedades de alfafa'; Options PS=300 LS=75 nodate no number; *Dados do experimento chamado 'dados'; Data dados; input TRAT \$ BLOCO \$ PROD @@; cards; A I 2.89 B I 1.58 C I 2.29 D I 2.56 A II 2.88 B II 1.28 C II 2.98 D II 2.00 A III 1.88 B III 1.22 C III 1.55 D III 1.82 A IV 2.90 B IV 1.21 C IV 1.95 D IV 2.20 A V 2.20 B V 1.30 C V 1.15 D V 1.33 A VI 2.65 B VI 1.66 C VI 1.12 D VI 1.00

;							
Proc Anova data Class TRAT BLC Model PROD = E Means TRAT/Tuk Run;Quit;	= dados; DCO; BLOCO TRA cey alpha	T; =0.05;					
RESULTADO:							
	The	ANOVA Proced	ure				
Dependent Variab	ole: PROD						
		Sum of					
Source	DF	Squares	Mean S	quare	F	Value	Pr > F
Model	8	7.14098333	0.892	62292		5.18	0.0031
Error	15	2.58661667	0.172	44111			
Corrected Total	23	9.72760000					
R-Squ	lare	Coeff Var	Root MS	Е	PROD	Mean	
0.734	095	21.85580	0.41526	0	1.90	0000	
Source	DF	Anova SS	Mean S	quare	F	Value	Pr > F
BLOCO	5	2.75895000	0.551	79000		3.20	0.0366
TRAT	3	4.38203333	1.460	67778		8.47	0.0016
Tukey	's Stude	ntized Range	(HSD) Tes	t for	PROD		
NOTE: This test but it gen	controls erally h	the Type I e as a higher T	xperiment ype II er	wise e ror ra	rror te th	rate, an REG	WQ.
Alpha			0.05				
Error Degrees of	Freedom		15				
Error Mean Squar	e.	0	. 172441				
Critical Value o	of Studen	tized Range	4.07597				
Minimum Signific	ant Diff	erence	0.691				
Means with th	le same l	etter are not	signific	antly	diffe	erent.	
Tukey Gr	rouping	Mean	Ν	TRAT			
	А	2.5667	6	А			
	В	1.8400	6	С			
	В	1.8183	6	D			
	В	1.3750	6	В			

Detalhes sobre essa macro pode ser obtida na subseção 3.1.1.5. Porém, algo de novo que acrescentou com relação a macro da subseção citada, foi o teste de médias (Tukey). Para solicitar o teste de médias, deve-se usar o comando Means, seguido da fonte de variação a qual deseja o teste de médias, que no nosso caso é TRAT. Na mesma linha acrescenta-se uma barra (/) seguida das opções do teste a sua escolha. Outro destaque na rotina, foi o acréscimo da fonte de variação BLOCO nos comando Class e Model. Para esse caso, escolhemos o teste Tukey

ao nível de significância de 5% de probabilidade. Mais detalhes será visto na seção sobre teste de Médias.

3.2.2 Exemplo do diâmetro de mudas de laranjeiras

Iremos apresentar mais um exemplo de experimento utilizando o delineamento em blocos casualizados.

Exemplo 3.3: Delineamento em Blocos Casualizados

Os diâmetros, em cm, de mudas de laranjeira "Pera-Rio" obtidos em um experimento de adubação estão apresentados a seguir. Foi utilizado o DBC com as repetições controlando possível gradiente de fertilidade do solo no pomar onde as mudas foram instaladas (15% de declividade). Apresente a análise de variância e comente os resultados. Comente sobre o controle local. (Dado: $SQ_{total} = 9,1889$).

		BLO	COS	
TRATAMENTOS	Ι	II	III	IV
Testemunha	1,75	2,03	2,12	2,14
Testeminha com SS	$2,\!05$	$2,\!26$	$2,\!42$	$2,\!53$
Fosfato de Araxá + Super Simples	$2,\!34$	2,02	$2,\!43$	$2,\!26$
Fosfato + SS + Matéria Orgânica	$2,\!80$	3,84	$3,\!44$	$3,\!09$
Farinha de Ossos $+$ SS	$1,\!95$	$2,\!15$	$1,\!99$	$2,\!17$
Farinha + SS + MO	$3,\!51$	3,32	$3,\!68$	$3,\!31$

Como primeira solução, iremos demonstrá-la de forma analítica, como segue abaixo.

3.2.2.1 Solução analítica

Solução:

Levantando as hipóteses, temos:

- H_0 : As adubações de mudas de laranjeira "Pêra-Rio" apresentam mesmo mesmo efeito no diâmetro (cm) dessas mudas.;
- H_a : Pelo menos duas adubações de mudas de laranjeira "Pêra-Rio" apresentam efeitos diferentes no diâmetro (cm) dessas mudas.

Vamos apresentar os dados de diâmetro (cm) de mudas de laranja, por meio de uma tabela simplificada:

		BLO	\cos		
TRATAMENTOS	Ι	II	III	IV	TOTAL
Testemunha	1,75	2,03	2,12	2,14	8,04
Testeminha com SS	$2,\!05$	2,26	$2,\!42$	$2,\!53$	9,26
Fosfato de Araxá + Super Simples	$2,\!34$	2,02	$2,\!43$	2,26	9,05
Fosfato + SS + Matéria Orgânica	$2,\!80$	$3,\!84$	$3,\!44$	$3,\!09$	$13,\!17$
Farinha de Ossos $+$ SS	$1,\!95$	$2,\!15$	$1,\!99$	$2,\!17$	$8,\!26$
Farinha + SS + MO	$3,\!51$	$3,\!32$	$3,\!68$	$3,\!31$	$13,\!82$
TOTAL	14,40	$15,\!62$	$16,\!08$	$15,\!50$	$G = 61,\!60$

A partir de agora, iremos desenvolver a análise de variância. Calculando inicialmente a correção, temos:

$$C = G^2/IJ$$

= 61,60²/24
= 158,1067.

Posteriormente, as somas de quadrados:

$$SQ_{tot} = (1,75^2 + 2,03^2 + \ldots + 3,68^2 + 3,31^2) - C$$

= 167,2956 - C
= 9,1889

$$SQ_{trat} = \frac{1}{4}(8,04^2 + 9,26^2 + 13,17^2 + 8,26^2 + 13,82^2) - C$$

= 166,2401 - C
= 8,1335.

$$SQ_{bloc} = \frac{1}{6}(14, 40^2 + 15, 62^2 + 16, 08^2 + 15, 50^2) - C$$

= 158, 3601 - C
= 0, 2535.

$$SQ_{res} = SQ_{tot} - SQ_{trat} - SQ_{bloc}$$

= 0,8019.

A valor dos quadrados médios são encontrados pela razão entre a soma de quadrados e o grau de liberdade da fonte de variação em análise.

Fazendo a tabela de análise de variância, temos:

Tabela 1: Análise de variância do diâmetro (cm) de mudas de laranjas em diversas adubações utilizadas.

FV	GL	SQ	QM	Teste F	F tab	Valor-p
Tratamentos	5	8,1335	$1,\!6267$	$30,41^{*}$	2,90	2,4e-07
Blocos	3	$0,\!2535$	0,0845	$1,\!58$	$3,\!29$	$0,\!2359$
Resíduo	15	0,8019	$0,\!0535$	-	-	-
TOTAL	23	9,1889	-	-	-	-

Percebemos pela análise de variância, pelo menos duas adubações apresentaram efeito de diâmetro (cm) de mudas de laranjas diferentes, ao nível de significância de 5% de probabilidade.

A precisão do experimento é calculado da seguinte forma:

$$CV = \frac{\sqrt{QME}}{MG} \times 100, \qquad (3.4)$$

sendo MG a média geral do experimento, isto é,

$$MG = \frac{2,01+2,07+2,26+2,32+2,29+3,46}{6}$$

= 2,57 cm.

Assim, o CV é calculado

$$CV = \frac{\sqrt{0.0535}}{2.57} \times 100 \tag{3.5}$$

$$= 9,01\%.$$
 (3.6)

O experimento apresenta alta precisão, pois CV < 10%.

No estudo das médias os testes de comparações múltiplas usaremos o teste Tukey, já que o test F foi significativo para o efeito dos tratamentos.

Fazendo o estudo do teste Tukey, calculemos a DMS:

$$DMS = q_{6,15gl.} \times \sqrt{\frac{QME}{J}} \\ = 4,59 \times \sqrt{\frac{0,0535}{6}} \\ = 0,5313.$$

Fazendo a tabela de médias, temos:

Tratamentos	Médias	Teste Tukey*
T6	$3,\!46$	a
T4	$3,\!29$	a
T2	2,32	b
T3	2,26	b
T5	2,07	b
T1	2,01	b

Tabela 2: Produtividade (Kg/parcela) das épocas de corte de alfafa.

(*) As médias seguidas de mesma letra, não diferem entre si estatisticamente, ao nível de significância de 5% de probabilidade.

De acordo com o teste Tukey, ao nível de significância de 5% de probabilidade, conclui-se que a adubação T6 (Farinha+SS+MO), apresenta maior efeito no diâmetro (cm) de mudas de laranjeira. As adubações T6 e T4, bem como as adubações T1, T2, T3 e T5 apresentam efeitos do diâmetro (cm) de mudas de laranjeiras iguais.

3.2.2.2 Usando o R - Criando as rotinas

Essa análise, descreve passo a passo como fazer a análise de variância para esse problema. Segue abaixo a rotina feita em R.

```
Código R:
```

```
> #exemplo do experimento p/ diam mudas laranja
>
> #mudando diretorio:
> setwd("D:/PROJETOS/EXPERIMENTAL/EXPERIMENTAL -
       APOSTILA/exemplos-resolvidos/exem-dbc-laranja")
>
> #carregando os dados:
>
> dados <- read.table("laranja.txt",h=T,dec=",")</pre>
      #h=T - existe cabeçalho
>
      #dec="," - a decimal é separado por ","
>
> dados
  TRAT BLOCO
               VR
          I 1.75
    T1
1
2
    T1
          II 2.03
3
         III 2.12
    T1
4
    T1
         IV 2.14
     .
           .
               .
     •
           .
               .
          I 3.51
21
    Τ6
22
         II 3.32
    T6
         III 3.68
23
    Т6
24
          IV 3.31
    T6
> #
> #transformando tratamentos e blocos em fatores:
> dados$TRAT <- as.factor(dados$TRAT)</pre>
> dados$BLOCO <- as.factor(dados$BLOCO)</pre>
>
> #abrindo o objeto "dados":
> attach(dados)
The following object is masked from dados (position 9):
   BLOCO, TRAT, VR
>
> #calculando totais de blocos:
> tot.bloc <- tapply(VR,BLOCO,sum);tot.bloc</pre>
   Ι
        ΙI
             III
                    IV
14.40 15.62 16.08 15.50
>
> #calculando totais de tratamentos:
```

```
> tot.trat <- tapply(VR,TRAT,sum);tot.trat</pre>
              ТЗ
   T1
                     T4
                              T5
                                     Τ6
         T2
 8.04 9.26 9.05 13.17 8.26 13.82
>
>
> #Total geral
> G <- sum(tot.trat);G
[1] 61.6
> #G <- sum(tot.bloc);G</pre>
>
> options(digits=7)#arredondamento de 8 dígitos
>
> #correção:
> C <- G<sup>2</sup>/length(VR);C
[1] 158.1067
>
> #Graus de liberdade
>
> gltrat <- length(levels(TRAT))-1;gltrat</pre>
[1] 5
> glbloc <- length(levels(BLOCO))-1;glbloc</pre>
[1] 3
> gltot <- length(levels(TRAT))*length(levels(BLOCO))-1;gltot</pre>
[1] 23
> glres <- gltot-gltrat-glbloc;glres</pre>
[1] 15
>
> #Somas de quadrado:
> sqtrat <- round(1/length(levels(BLOCO))*sum(tot.trat<sup>2</sup>)-C,4);sqtrat
[1] 8.1335
> sqbloc <- round(1/length(levels(TRAT))*sum(tot.bloc<sup>2</sup>)-C,4);sqbloc
[1] 0.2535
> sqtot <- round(sum(VR<sup>2</sup>)-C,4);sqtot
[1] 9.1889
> sqres <- sqtot-sqtrat-sqbloc;sqres</pre>
[1] 0.8019
>
> #Quadrado médio:
> qmtrat <- round(sqtrat/gltrat,4);qmtrat</pre>
[1] 1.6267
> qmbloc <- round(sqbloc/glbloc,4);qmbloc</pre>
[1] 0.0845
> qmres <- round(sqres/glres,4);qmres</pre>
[1] 0.0535
>
> #Teste F - tabelado
> ftabtrat <- round(qf(0.95,gltrat,glres),4);ftabtrat</pre>
[1] 2.9013
```

```
> ftabbloc <- round(qf(0.95,glbloc,glres),4);ftabbloc</pre>
[1] 3.2874
>
> #Teste F - calculado
> ftrat <- round(qmtrat/qmres,4);ftrat</pre>
[1] 30.4056
> fbloc <- round(qmbloc/qmres,4);fbloc</pre>
[1] 1.5794
>
> #Valor-p do teste F
> ptrat <- round(pf(ftrat,gltrat,glres,lower.tail=FALSE),8);ptrat</pre>
[1] 2.4e-07
> pbloc <- round(pf(fbloc,glbloc,glres,lower.tail=FALSE),4);pbloc</pre>
[1] 0.2359
>
> #QUADRO RESUMO DA ANAVA
>
> FV
         <- c("Trat", "Bloc", "Res", "Total")
> GL
        <- c(gltrat,glbloc,glres,gltot)
> SQ
        <- c(sqtrat,sqbloc,sqres,sqtot)
        <- c(qmtrat,qmbloc,qmres,"-")
> QM
> Fcalc <- c(ftrat,fbloc,"-","-")</pre>
        <- c(ftabtrat,ftabbloc,"-","-")
> Ftab
> pvalue <- c(ptrat,pbloc,"-","-")</pre>
> #
> quadres <-data.frame(FV,GL,SQ,QM,Fcalc,Ftab,pvalue);quadres</p>
    FV GL
                           Fcalc
               SQ
                      QM
                                  Ftab pvalue
 Trat 5 8.1335 1.6267 30.4056 2.9013 2.4e-07
1
2
 Bloc 3 0.2535 0.0845 1.5794 3.2874 0.2359
3
   Res 15 0.8019 0.0535
4 Total 23 9.1889
                               _
```

3.2.2.3 Usando o R - Rotinas de pacotes

De modo mais compacto, usando pacotes do R, essa rotina além de fazer a análise de variância, também mostra a rotina para o teste Tukey. Os pacotes utilizados foram: **multcomp** e **agricolae**. Segue abaixo a rotina.

Capítulo 3. Exemplos Resolvidos -

```
Df Sum Sq Mean Sq F value
                                         Pr(>F)
TRAT
                8.133
                        1.6267
                                 30.43 2.42e-07 ***
             5
BLOCO
             3
                0.253
                       0.0845
                                  1.58
                                          0.236
Residuals
            15 0.802
                       0.0535
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> #############
> #Teste Tukey
> ############
> #pacotes
> #install.packages("multcomp")
> #install.packages("agricolae")
> library(multcomp)
> library(agricolae)
> Tuk <- HSD.test(VR,TRAT,glres,qmres,alpha=0.05,</pre>
+
                  group=TRUE, main="efeito de épocas de corte
                  na produtividade (Kg/parcela) de alfafa");Tuk
+
$statistics
                 CV MSerror
                                   HSD
      Mean
  2.566667 9.011714 0.0535 0.5313826
$parameters
  Df ntr StudentizedRange
  15
       6
                4.594735
$means
       VR.
                std r Min Max
T1 2.0100 0.1798147 4 1.75 2.14
T2 2.3150 0.2085665 4 2.05 2.53
T3 2.2625 0.1759498 4 2.02 2.43
T4 3.2925 0.4491010 4 2.80 3.84
T5 2.0650 0.1112055 4 1.95 2.17
T6 3.4550 0.1759735 4 3.31 3.68
$comparison
NULL
$groups
  trt means M
  T6 3.4550 a
1
2
  T4 3.2925 a
  T2 2.3150 b
3
4
  T3 2.2625 b
5
  T5 2.0650 b
   T1 2.0100 b
6
```

44

> #

> #Gráfico de Tukey: > THSD <- TukeyHSD(anava, wich="TRAT",ordered=TRUE,conf.level=0.95) > plot(TukeyHSD(anava, "TRAT",ordered=T)) > abline(v=Tuk\$statistics[4],col="red")

Usando o pacote **ExpDes**, as linhas de comando ficam mais simples. Segue abaixo a rotina.

```
Código R: Usando o ExpDes.pt
> #Usando as rotinas prontas: ExpDes.pt
> #Carregando o pacote ExpDes.pt:
> require(ExpDes.pt)
> #carregando os dados:
> dados <- read.table("laranja.txt",h=T,dec=",")</pre>
> #h=T - existe cabeçalho
> #dec="," - a decimal é separado por ","
> #transformando tratamentos e blocos em fatores:
> dados$TRAT <- as.factor(dados$TRAT)</pre>
> dados$BLOCO <- as.factor(dados$BLOCO)</pre>
> #abrindo o objeto "dados":
> attach(dados)
> #ANAVA:
> dbc(trat=TRAT, bloco=BLOCO, resp=VR, quali = TRUE,
+ mcomp = "tukey", sigT = 0.05, sigF = 0.05)
   _____
Quadro da analise de variancia
         GL
               SQ
                       QM
                              Fc Pr>Fc
Tratamento 5 8.1335 1.62670 30.4251 0.0000
          3 0.2535 0.08449 1.5802 0.2357
Bloco
Residuo
         15 0.8020 0.05347
         23 9.1889
Total
```

Capítulo 3. Exemplos Resolvidos •

3.2.2.4 Usando o SISVAR

Usando o SISVAR para resolver esse exercício.

Sisvar:

Entrada de dados com a extensão aquivo.dbf, usando o programa BrOffice.org Calc. Inicialmente, a estrutura do arquivo para esse exemplo é dado a seguir.

		P	6
	A	b	
1	TRAT	BLOCO	VR
2	T1	1	1,75
3	T1	11	2,03
4	T1	- 111	2,12
5	T1	IV	2,14
6	T2	1	2,05
7	T2	11	2,26
8	T2		2,42
9	T2	IV	2,53
10	T3	1	2,34
11	T3	11	2,02
12	T3		2,43
13	T3	IV	2,26
14	T4	1 I I	2,8
15	T4	11	3,84
16	T4	- 111	3,44
17	T4	IV	3,09
18	T5	1	1,95
19	T5	ll II	2,15
20	T5	III	1,99
21	T5	IV	2,17
22	T6	1	3,51
23	T6	11	3,32
24	T6	III	3,68
25	T6	IV	3,31

Após digitado os dados, segue a exportação do arquivo do BrOffice para a extensão <>.dbf: Arquivo > Salvar como... > Salvar em: escolher o diretório > Tipo:dBASE(.dbf) > Nome: laranja.dbf > Abrir. O arquivo está pronto para a análise no Sisvar.

Passo 2: \dots > Anava > Abrir arquivo.

S TABELA DE ANÁLISE DE VARIÂNCIA	X
TABELA DE ANÁLISE DE VARIÂNCIA	
	erro= Fim Adicionar
	* ()
7	
	Variáveis do arquivo
1	
Limpar Remover Digite as Fontes de Variaçã	ăo
Aiuda	

Passo 3: ...> Abrir arquivo > laranja.dbf.

S Abrir		×
• exemplos-resolvidos • exem-dbc-alfafa	👻 🎦 Pesquisar exer	n-dbc-alfafa 🛛 😥
Organizar 🔻 Nova pasta		8= • 🖬 🔞
Favoritos Área de Trabalho	Data de modificação 16/04/2014 08:23	Planiha do OpenDo
Downloads Tipo: Planiha do OpenDocument Tamanho: 345 bytes Locais Data de modificação: 16/04/2014 08	:23	
Documentos		
↓ Músicas		
ne statico doméstico		
: Computador		
Sisco Local (C:)		>
Nome:	DB e DBF files	; (*.DB;*.DBF;*.db; 💌
	Abrir	Cancelar

Passo 4: Com o arquivo laranja.dbf aberto no Sisvar, percebemos que as variáveis do arquivo são: TRAT (T1, T2, T3, T4, T5 e T6), BLOCO (I, II, III, IV) e VR (variável resposta, referente ao diâmetro (cm) da mudas de laranjeira referente aos tipos de adubação).

Passo 5: Adicionando a variável TRAT: em variáveis do arquivo, selecione a variável TRAT (1), e posteriormente, clique no botão Adicionar ou Enter (2). Depois de adicionado, a variável torna-se visível em Tabela de análise de variância (3).

Passo 6: Posteriormente, insere a variável BLOCO, da mesma forma que inserimos TRAT no **Passo 5**. Ao final desse passo, estamos prontos para terminar a adição de variáveis, já que em tabela de análise de variância temos as duas variáveis de interesse, como visto na figura abaixo.

Passo 7: Para finalizarmos, basta apertar o botão **Fim**, do qual, abrirá uma janela perguntando: "Quer encerrar o quadro de análise de variância?". Em seguida, clique em **Yes**, seguindo para o próximo passo.

TRAT BLOCO					erro=	Fim Adicion
					*	
					Abrir arquivo	Fechar arqui
					Variáveis d	lo arquivo
Confirm				×	TRAT BLOCO VP	
0	Quer encerra	r o quadro de anális	se de variância?			
Clíqu o br	ie e siga	para]			

Passo 8: Nesse passo, iremos escolher qual o teste de médias que será feito nos tratamentos. Nesse exercício, foi escolhido o teste Tukey ao nível de significância de 5% de probabilide. Assim, clique em TRAT, selecione o teste Tukey, indique o nível de significância: 0,05, e clique em Ok e Ok.

Opções do quadro da análise d Dê um clique duplo na FV par	Scolha a opção da fonte de variação selecionada FV: TRAT	×
TRAT BLOCO		
	Teste escolhido	
	C Nenhum teste	
	O Test NK	
	O Teste de tius Ponterroni	
	C Testet (LSD)	
	C Contrastes	
	C Regressão	
	Nível de significância: 0.05	
Ajuda	Ok	

Passo 9: Nesse penúltimo passo, temos que agora apenas inserir a variável resposta. Dessa forma, clique em VR e finalize a análise Finalizar.

Passo 10: Antes de finalizar a análise, é perguntado se deseja fazer transformação nos dados. Isso ocorre, quando o resíduo não atende às pressuposições da análise de

variância. Nesse caso, não iremos fazer transformação. Portanto, clique em Finalizar

Ao final de todos esses passos, é exibido um relatório com todas as análises escolhidas.

Variável analisad Opção de transfo	da: VR rmação: Variável	sem transformação	(Y)	
	TABELA DE AN	ÁLISE DE VARIÂNCIA		
FV	GL	sq	QM	FC Pr>FC
TRAT BLOCO erro	5 3 15	8.133483 0.253467 0.801983	1.626697 0.084489 0.053466	30.425 0.0000 1.580 0.2357
Total corrigido	23	9.188933		
CV (%) = Média geral:	9.01 2.5666667	Número de obse	rvações:	24
Teste Tukey par	ra a FV TRAT			
DMS: 0,5313///981	//521 NMS: 0,05			
Média harmonica de Erro padrão: 0,11	o número de repe 5613099988232	tições (r): 4		
Tratamentos		Médias	Resultados d	o teste
T1 T5 T3 T2 T4 T6		2.010000 a1 2.065000 a1 2.262500 a1 2.315000 a1 3.292500 3.455000	a2 a2	

3.2.2.5 Usando o SAS - Criando as rotinas

Macro SAS:

As rotinas em SAS seguem o mesmo padrão feito no exemplo anterior. A seguir segue as linhas de comando.

```
title 'Analise de Variancia sobre o diâmetro de mudas de laranjeiras';
Options PS=300 LS=75 nodate no number;
*Dados do experimento chamado 'dados';
Data dados;
input TRAT $ BLOCO $ VR @@;
cards;
T1 I 1.75 T3 I 2.34 T5 I 1.95
T1 II 2.03 T3 II 2.02 T5 II 2.15
T1 III 2.12 T3 III 2.43 T5 III 1.99
T1 IV 2.14 T3 IV 2.26 T5 IV 2.17
T2 I 2.05 T4 I 2.8 T6 I 3.51
T2 II 2.26 T4 II 3.84 T6 II 3.32
```

T2 III 2.42 T4 III 3.44 T6 III 3.68 T2 IV 2.53 T4 IV 3.09 T6 IV 3.31 Proc Anova data = dados; Class TRAT BLOCO; Model VR = BLOCO TRAT; Means TRAT/Tukey alpha=0.05; Run;Quit; **RESULTADO:** Analise de Variância sobre o diâmetro de mudas de laranjeiras Options PS=300 nodate no number The ANOVA Procedure Dependent Variable: VR Sum of Source DF Mean Square F Value Pr > FSquares <.0001 Model 8 8.38695000 1.04836875 19.61 Error 15 0.80198333 0.05346556 Corrected Total 23 9.18893333 R-Square Coeff Var Root MSE VR Mean 0.912723 9.008813 0.231226 2.566667 Source DF F Value Pr > FAnova SS Mean Square BLOCO 3 0.25346667 0.08448889 1.58 0.2357 5 8.13348333 1.62669667 30.43 <.0001 TRAT Tukey's Studentized Range (HSD) Test for VR NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. 0.05 Alpha Error Degrees of Freedom 15 Error Mean Square 0.053466 Critical Value of Studentized Range 4.59474 Minimum Significant Difference 0.5312 Means with the same letter are not significantly different. Tukey Grouping Mean Ν TRAT А 3.4550 4 T6 3.2925 Α 4 Т4 T2 В 2.3150 4 4 В 2.2625 T3 В 2.0650 4 T5 2.0100 T1 В 4

3.3 Delineamento em Quadrado Latino

Quando a área experimental apresenta heterogênea em duas direções, isto é, quando apresenta duas fontes de variáveis indesejáveis, faz-se necessário o uso do delineamento em quadrado latino, em que as parcelas são agrupadas de duas maneiras, em linhas e colunas, de modo que os tratamentos são distribuídos em uma única vez em cada linha e coluna, e o número de repetições é obrigatoriamente igual ao número de tratamentos.

3.3.1 Exemplo do ganho de peso de suínos

Exemplo 3.4: Delineamento em Quadrado Latino

Em um experimento em Quadrado Latino sobre a alimentação de suínos foram estudadas quatro rações: A = Milho, B = Sorgo, C = Milho + complemento, D = Sorgo + complemento. Cada parcela continha 5 animais. Foram utilizadas 4 raças diferentes e quatro faixas de pesos iniciais. Os dados de ganho em peso, ao final do experimento, são apresentados a seguir.

	30-36	37-42	43-46	47 ou mais
R1	35 (A)	33 (B)	28 (D)	28 (C)
$\mathbf{R2}$	15 (B)	40~(C)	29(A)	14 (D)
R3	31 (C)	36 (D)	20 (B)	27 (A)
$\mathbf{R4}$	19 (D)	46~(A)	39(C)	12 (B)

A seguir as soluções serão apresentadas, sendo a primeira de forma analítica.

3.3.1.1 Solução analítica

A solução analítica tem como propósito, apresentar didaticamente a análise de variância em um delineamento em quadrado latino.

Levantando as hipóteses, temos:

 H_0 : As rações apresentam mesmo ganho de peso de suínos;

 H_a : Pelo menos duas rações apresentam efeitos diferentes
no ganho de peso de suínos.

Vamos apresentar os dados de ganho de peso (Kg) de suínos, referentes a quatro tipos de rações, por meio de uma tabela simplificada:

FAIXA DE PESOS(Kg) (Coluna)					
RAÇAS (Linha)	30-36	37-42	43-46	47 ou mais	TOTAIS
R1	35(A)	33(B)	28(D)	28(C)	124
R2	15(B)	40(C)	29(A)	14(D)	98
R3	31(C)	36(D)	20(B)	27(A)	114
R4	19(D)	46(A)	39(C)	12(B)	116
TOTAIS	100	155	116	81	G = 452

Um quadro auxiliar para obter os totais dos tratamentos, como segue:

	RE	EPEI	ΓIÇÕ	\mathbf{ES}	
TRATAMENTOS	Ι	II	III	IV	TOTAL
A	35	29	27	46	137
В	33	15	20	12	80
\mathbf{C}	28	40	31	39	138
D	28	14	36	19	97

A partir de agora, iremos desenvolver a análise de variância. Calculando inicialmente a correção, temos:

$$C = G^2/IJ = 452^2/16 = 12769,00$$

Posteriormente, as somas de quadrados:

$$SQ_{tot} = (35^2 + 33^2 + ... + 39^2 + 12^2) - C$$

= 14272,00 - C
= 1503,00.

$$SQ_{trat} = \frac{1}{4}(137^2 + 80^2 + 138^2 + 97^2) - C$$

= 13405.50 - C
= 636.50.

$$SQ_{lin} = \frac{1}{4}(124^2 + 98^2 + 114^2 + 116^2) - C$$

= 12858,00 - C
= 89.00.

$$SQ_{col} = \frac{1}{4}(100^2 + 155^2 + 116^2 + 81^2) - C$$

= 13510, 50 - C
= 741, 50.

$$SQ_{res} = SQ_{tot} - SQ_{trat} - SQ_{bloc}$$

= 36.00.

A valor dos quadrados médios são encontrados pela razão entre a soma de quadrados e o grau de liberdade da fonte de variação em análise.

Fazendo a tabela de análise de variância, temos:

Tabela 1: Análise de variância do ganho de peso em kg, das rações de suínos.						
FV	GL	SQ	QM	Teste F	F tab	Valor-p
Tratamentos	3	$636,\!50$	212,17	$35, 36^{*}$	4,76	0,0003
Linhas	3	89,00	$29,\!67$	$4,95^{*}$	4,76	0,0461
Colunas	3	$741,\!50$	$247,\!17$	$41, 2^{*}$	4,76	0,0002
Resíduo	6	$36,\!00$	$6,\!00$	-	-	-
TOTAL	15	1503,00	-	-	-	-

Pela análise de variância, pelo menos duas rações apresentam ganho de peso (Kg) diferentes, ao nível de significância de 5% de probabilidade.

A precisão do experimento é calculado da seguinte forma:

$$CV = \frac{\sqrt{QME}}{MG} \times 100, \qquad (3.7)$$

sendoMGa média geral do experimento, isto é,

$$MG = \frac{20,00 + 24,25 + 34,25 + 34,50}{4}$$

= 28,25 kg.

Assim, o CV é calculado

$$CV = \frac{\sqrt{6,00}}{28,25} \times 100 \tag{3.8}$$

$$= 8,67\%.$$
 (3.9)

O experimento apresenta alta precisão.

No estudo das médias os testes de comparações múltiplas usaremos o teste Tukey, já que o test F foi significativo para o efeito dos tratamentos.

Fazendo o estudo do teste Tukey, calculemos a DMS:

$$DMS = q_{4,6gl.} \times \sqrt{\frac{QME}{J}}$$
$$= 4,90 \times \sqrt{\frac{6,00}{4}}$$
$$= 6,00.$$

Fazendo a tabela de médias, temos:

Tratamentos	Médias	Teste Tukey
С	2,57	a
А	1,84	a
D	1,82	b
В	$1,\!38$	b

Tabela 2: Ganho de peso (Kg) das rações de suínos.

De acordo com o teste Tukey, ao nível de significância de 5% de probabilidade, conclui-se que as rações A e B apresentam peso médio (Kg) de suínos superior as demais rações. As rações A e B, bem como C e D apresentam mesmo peso médio.

3.3.1.2 Usando o R - Criando as rotinas

Ao invés da solução analítica, podemos usar o R, para fazer a análise de variância desse delineamento passo a passo, como será feito a seguir.

Código R: Criando as rotinas

```
> #exemplo do experimento p/ prod de var de alfafa
> #mudando diretorio:
> setwd("D:/PROJETOS/EXPERIMENTAL/EXPERIMENTAL -
       APOSTILA/exemplos-resolvidos/exem-dql-suino")
>
> #carregando os dados:
>
> dados <- read.table("suino.txt",h=T,dec=",")</pre>
> #h=T - existe cabeçalho
> #dec="," - a decimal é separado por ","
> dados
  TRAT LIN COL VR
1
     A R1 F1 35
2
     B R2 F1 15
3
     C R3 F1 31
           •
     .
        .
     B R4 F4 12
16
> #
> #transformando tratamentos, linhas e colunas em fatores:
> str(dados)
'data.frame': 16 obs. of 4 variables:
$ TRAT: Factor w/ 4 levels "A", "B", "C", "D": 1 2 3 4 2 3 4 1 4 1 ...
$ LIN : Factor w/ 4 levels "R1", "R2", "R3",..: 1 2 3 4 1 2 3 4 1 2 ...
$ COL : Factor w/ 4 levels "F1", "F2", "F3",..: 1 1 1 1 2 2 2 2 3 3 ...
$ VR : num 35 15 31 19 33 40 36 46 28 29 ...
> #dados <- transform(dados, LIN=factor(LIN), COLUNA=factor(COL))
> #str(dados)
>
> #abrindo o objeto "dados":
> attach(dados)
#-----
>
```

```
> #calculando totais de tratamentos:
> tot.trat <- tapply(VR,TRAT,sum);tot.trat</pre>
  Α
     B C
             D
137 80 138 97
>
> #calculando totais de linhas (raças):
> tot.lin <- tapply(VR,LIN,sum);tot.lin</pre>
R1 R2 R3 R4
124 98 114 116
>
> #calculando totais de colunas (raças):
> tot.col <- tapply(VR,COL,sum);tot.col</pre>
F1 F2 F3 F4
100 155 116 81
>
> #Total geral
> G <- sum(tot.trat);G</pre>
[1] 452
> #G <- sum(tot.lin);G</pre>
> #G <- sum(tot.col);G
>
> options(digits=8)#arredondamento de 8 dígitos
>
> #correção:
> C <- G<sup>2</sup>/length(VR);C
[1] 12769
> #-----
> #Graus de liberdade
>
> gltrat <- length(levels(TRAT))-1;gltrat</pre>
[1] 3
> gllin <- length(levels(LIN))-1;gllin</pre>
[1] 3
> glcol <- length(levels(COL))-1;glcol</pre>
[1] 3
> gltot <- length(levels(COL))*length(levels(LIN))-1;gltot</pre>
[1] 15
> glres <- gltot-gllin-glcol-gltrat;glres</pre>
[1] 6
> #-----
> #Somas de quadrado:
> sqtrat <- round(1/length(levels(TRAT))*sum(tot.trat^2)-C,2);sqtrat</pre>
[1] 636.5
> sqlin <- round(1/length(levels(COL))*sum(tot.lin<sup>2</sup>)-C,2);sqlin
[1] 89
> sqcol <- round(1/length(levels(LIN))*sum(tot.col^2)-C,2);sqcol</pre>
[1] 741.5
> sqtot <- round(sum(VR^2)-C,2);sqtot</pre>
```

```
[1] 1503
> sqres <- sqtot-sqlin-sqcol-sqtrat;sqres</pre>
[1] 36
> #-----
                   _____
> #Quadrado médio:
> qmtrat <- round(sqtrat/gltrat,2);qmtrat</pre>
[1] 212.17
> qmlin <- round(sqlin/gllin,2);qmlin</pre>
[1] 29.67
> qmcol <- round(sqcol/glcol,2);qmcol</pre>
[1] 247.17
> qmres <- round(sqres/glres,2);qmres</pre>
[1] 6
> #-----
> #Teste F - tabelado
> ftabtrat <- round(qf(0.95,gltrat,glres),2);ftabtrat</pre>
[1] 4.76
> ftablin <- round(qf(0.95,gllin,glres),2);ftablin</pre>
[1] 4.76
> ftabcol <- round(qf(0.95,glcol,glres),2);ftabcol</pre>
[1] 4.76
>
> #Teste F - calculado
> ftrat <- round(qmtrat/qmres,2);ftrat</pre>
[1] 35.36
> flin <- round(qmlin/qmres,2);flin</pre>
[1] 4.95
> fcol <- round(qmcol/qmres,2);fcol</pre>
[1] 41.2
>
> #Valor-p do teste F
> ptrat <- round(pf(ftrat,gltrat,glres,lower.tail=FALSE),4);ptrat</pre>
[1] 3e-04
> plin <- round(pf(flin,gllin,glres,lower.tail=FALSE),4);plin</pre>
[1] 0.0461
> pcol <- round(pf(fcol,glcol,glres,lower.tail=FALSE),4);pcol</pre>
[1] 2e-04
>
> #QUADRO RESUMO DA ANAVA
>
> FV
       <- c("Trat","Lin","Col","Res","Total")
> GL
      <- c(gltrat,gllin,glcol,glres,gltot)
> SQ
        <- c(sqtrat,sqlin,sqcol,sqres,sqtot)
        <- c(qmtrat,qmlin,qmcol,qmres,"-")
> QM
> Fcalc <- c(ftrat,flin,fcol,"-","-")</pre>
> Ftab
        <- c(ftabtrat,ftablin,ftabcol,"-","-")
```

```
> pvalue <- c(ptrat,plin,pcol,"-","-")</pre>
> #
> quadres <-data.frame(FV,GL,SQ,QM,Fcalc,Ftab,pvalue);quadres</p>
     FV GL
               SQ
                      QM Fcalc Ftab pvalue
  Trat 3 636.5 212.17 35.36 4.76 3e-04
1
            89.0 29.67 4.95 4.76 0.0461
2
   Lin 3
3
   Col 3 741.5 247.17 41.2 4.76 2e-04
4
   Res 6
            36.0
                       6
                             _
5 Total 15 1503.0
                       _
```

3.3.1.3 Usando o R - Rotinas de pacotes

Para facilitar a análise no R, podemos usar pacotes prontos, para realizar a análise de variância. Como na ANAVA dos outros delineamentos, para essa seção, iremos usar a função **aov()** da base do próprio R, sem necessidade de instalação de pacotes. Para o teste de médias, será usado os pacotes **multicomp** e **agricolae**. Maiores detalhes sobre os testes de comparações múltiplas, poderá ser consultado na seção específica.

```
Código R: Usando rotinas prontas
> #Usando as rotinas prontas
> #ANAVA:
> anava <-aov(VR~TRAT+LIN+COL)</pre>
> summary(anava)
           Df Sum Sq Mean Sq F value
                                      Pr(>F)
TRAT
            3 636.5 212.167 35.3611 0.0003288 ***
            3
LIN
               89.0 29.667 4.9444 0.0462398 *
            3 741.5 247.167 41.1944 0.0002133 ***
COL
Residuals
           6 36.0
                      6.000
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> #-----
> #############
> #Teste Tukey
> ############
> #pacotes
> #install.packages("multcomp")
> #install.packages("agricolae")
> library(multcomp)
> library(agricolae)
> Tuk <- HSD.test(VR,TRAT,glres,qmres,alpha=0.05,</pre>
+ group=TRUE, main="efeito de raçoes no peso
+ médio (Kg) de suínos");Tuk
$statistics
             CV MSerror
                           HSD
  Mean
  28.25 8.6707602
                      6 5.99586
```

```
$parameters
  Df ntr StudentizedRange
   6 4
                 4.8955992
$means
               std r Min Max
     VR.
A 34.25 8.5391256 4 27
                           46
B 20.00 9.2736185 4
                      12
                           33
C 34.50 5.9160798 4 28 40
D 24.25 9.7425185 4 14 36
$comparison
NULL
$groups
  trt means M
1
  C 34.50 a
2
    A 34.25 a
3
  D 24.25 b
4
    B 20.00 b
> #
> #Gráfico de Tukey:
> THSD <- TukeyHSD(anava, wich="TRAT", ordered=TRUE, conf.level=0.95)
> plot(TukeyHSD(anava, "TRAT", ordered=T))
> abline(v=Tuk$statistics[4],col="red")
                                    95% family-wise confidence leve
                            8-0
                            A-B
                            0
B
                            A-D
                            7
                            C−A
                                           els of TRAT
```

Usando o pacote **ExpDes.pt**, essa análise pode ser simplificada mais ainda. Segue as linhas de comando abaixo.

```
> #Estrutura do objeto dados
> str(dados)
'data.frame': 16 obs. of 4 variables:
$ TRAT: Factor w/ 4 levels "A", "B", "C", "D": 1 2 3 4 2 3 4 1 4 1 ...
$ LIN : Factor w/ 4 levels "R1", "R2", "R3",...: 1 2 3 4 1 2 3 4 1 2 ...
$ COL : Factor w/ 4 levels "F1", "F2", "F3",...: 1 1 1 1 2 2 2 2 3 3 ...
$ VR : num 35 15 31 19 33 40 36 46 28 29 ...
> #abrindo o objeto "dados":
> attach(dados)
> #ANAVA
> dql(trat=TRAT, linha=LIN, coluna=COL, resp=VR, quali = TRUE,
+ mcomp = "tukey", sigT = 0.05, sigF = 0.05)
  _____
Quadro da analise de variancia
_____
                  QM Fc Pr>Fc
       GL
            SQ
Tratamento 3 636.5 212.167 35.361 0.000329
       3 89.0 29.667 4.944 0.046240
Linha
Coluna
       3 741.5 247.167 41.194 0.000213
Residuo
       6 36.0 6.000
Total 15 1503.0
_____
CV = 8.67 \%
_____
Teste de normalidade dos residuos (Shapiro-Wilk)
p-valor: 0.9989003
De acordo com o teste de Shapiro-Wilk a 5% de significancia,
os residuos podem ser considerados normais.
_____
Teste de Tukey
______
Grupos Tratamentos Medias
 C 34.5
а
 A 34.25
а
b
  D
     24.25
b B 20
```

3.3.1.4 Usando o SISVAR

Essa análise no Sisvar, haverá pequenas diferenças na hora de acrescentar as fontes de variação (Passo 7). Abaixo segue os passos.

Sisvar:

Entrada de dados com a extensão aquivo.dbf, usando o programa BrOffice.org Calc. Inicialmente, a estrutura do arquivo para esse exemplo é dado a seguir.

	A	В	С	D
1	TRAT	LIN	COL	VR
2	А	R1	F1	35,00
3	В	R2	F1	15,00
4	С	R3	F1	31,00
5	D	R4	F1	19,00
6	В	R1	F2	33,00
7	С	R2	F2	40,00
8	D	R3	F2	36,00
9	А	R4	F2	46,00
10	D	R1	F3	28,00
11	А	R2	F3	29,00
12	В	R3	F3	20,00
13	С	R4	F3	39,00
14	С	R1	F4	28,00
15	D	R2	F4	14,00
16	А	R3	F4	27,00
17	В	R4	F4	12,00

Após digitado os dados, segue a exportação do arquivo do BrOffice para a extensão <>.dbf: Arquivo > Salvar como... > Salvar em: escolher o diretório > Tipo:dBASE(.dbf) > Nome: suino.dbf > Abrir. O arquivo está pronto para a análise no Sisvar.

Usando agora o sisvar, seguindo os passos:

Passo 1: Sisvar > Análise > Anava.

Passo 2: ...> Anava > Abrir arquivo.

Passo 3: ...> Abrir arquivo > suino.dbf.

S Abrir		×
• exemplos-resolvidos • exem-dbc-alfafa	👻 🌆 Pesquisar exe	em-dbc-alfafa 🛛 😥
Organizar 👻 Nova pasta		88 • 🔟 🔞
Favoritos	Data de modificação	Tipo
Rea de Trabaho [™] afefa.dbf [™] Downloads [™] Dopobox [™] Dorphox [™] Dorphox [™] Dorphox Locais	16/04/2014 08:23 3	Planiha do OpenDo
Bibliotecas		
imagens J Músicas ₩ Videos		
n n n n n n n n n n n n n n n n n n n		
Computador		F F
Nome:	DB e DBF file	es (*.DB;*.DBF;*.db; 💌
	Abrir	Cancelar

Passo 4: Com o arquivo suino.dbf aberto no Sisvar, percebemos que as variáveis do arquivo são: TRAT (A, B, C e D), LIN (R1, R2, R3 e R4), COL (F1, F2, F3 e F4) e VR (variável resposta, ganho de peso de suínos).

S TABELA DE ANÁLISE DE VARIÂNCIA	×
	erro- Fim Adiciona Adiciona Fechar arquivo Variáveis do arquivo TRAT PROD
Limper Remover Digite as Fontes de Variaçã	0

Passo 5: Adicionando a variável TRAT: em var	ciáveis do	arquivo, sel	lecione a variável			
TRAT (1), e posteriormente, clique no botão	Adicionar	ou Enter	(2). Depois de			
adicionado, a variável torna-se visível em Tabela de análise de variância (3).						

Passo 6: Posteriormente, insere a variável LIN e COL, da mesma forma que inserimos TRAT no **Passo 5**. Ao final desse passo, estamos prontos para terminar a adição de variáveis, já que em tabela de análise de variância temos as duas variáveis de interesse, como visto na figura abaixo.

Passo 7: Para finalizarmos, basta apertar o botão Fim, do qual, abrirá uma janela perguntando: "Quer encerrar o quadro de análise de variância?". Em seguida, clique em Yes, seguindo para o próximo passo.

Passo 8: Nesse passo, iremos escolher qual o teste de médias que será feito nos tratamentos. Nesse exercício, foi escolhido o teste Tukey ao nível de significância de 5% de probabilide. Assim, clique em TRAT, selecione o teste Tukey, indique o nível de significância: 0,05, e clique em Ok e Ok.

Passo 9: Nesse penúltimo passo, temos que agora apenas inserir a variável resposta. Dessa forma, clique em PROD e finalize a análise Finalizar.

Passo 10: Antes de finalizar a análise, é perguntado se deseja fazer transformação nos dados. Isso ocorre, quando o resíduo não atende às pressuposições da análise de variância. Nesse caso, não iremos fazer transformação. Portanto, clique em Finalizar.

Ao final de todos esses passos, é exibido um relatório com todas as análises escolhidas.

1						
Variável analisa Opção de transfo	da: VR rmação: Variáve	l sem transformaçã	io (Y)			
TABELA DE ANÁLISE DE VARIÂNCIA						
FV	GL	sq	QM	Fc Pr>Fc		
TRAT LIN COL erro	3 3 3 6	636.500000 89.000000 741.500000 36.000000	212.166667 29.666667 247.166667 6.000000	35.361 0.0003 4.944 0.0462 41.194 0.0002		
Total corrigido	15	1503.000000				
CV (%) = Média geral:	8.67 28.2500000	Número de obs	ervações:	16		
Teste Tukey pa	ra a FV TRAT					
DM5: 5,99491654209343 NM5: 0,05						
Média harmonica do número de repetições (r): 4 Erro padrão: 1,22474487139159						
Tratamentos		Médias	Resultados d	lo teste		
B D A C		20.000000 a1 24.250000 a1 34.250000 34.500000	a2 a2			
-						

•

3.3.1.5 Usando o SAS - Criando as rotinas

A macro criada no SAS para resolver a análise de variância para um experimento com delineamento em quadrado latino, terá pequenas alterações das outras já feitas para os delineamentos estudados. Faremos as observações após a apresentação das linhas de comando, mostradas a seguir.

Macro SAS:
title 'Analise de Variancia sobre o ganho de peso (kg) de suinos':
Options PS=300 LS=75 nodate no number:
*Dados do experimento chamado 'dados':
Data dados:
input TRAT \$ LIN \$ COL \$ VB @@.
cards.
A B1 F1 35 00
B B2 F1 15.00
C B3 F1 31 00
D R4 F1 19.00
B B1 F2 33 00
C B2 F2 40 00
D B3 F2 36.00
A R4 F2 46 00
D B1 F3 28 00
A B2 F3 29 00
B B3 F3 20 00
C R4 F3 39.00

C R1 F4 28.00 D R2 F4 14.00 A R3 F4 27.00 B R4 F4 12.00 Proc Anova data = dados; Class TRAT LIN COL; Model VR = TRAT LIN COL; Means TRAT/Tukey alpha=0.05; Run;Quit; **RESULTADO:** Analise de Variancia sobre o ganho de peso (kg) de suinos Options PS=300 nodate no number The ANOVA Procedure Dependent Variable: VR Sum of Source DF Mean Square F Value Pr > FSquares 9 Model 1467.000000 163.000000 27.17 0.0003 6 6.000000 Error 36.000000 Corrected Total 15 1503.000000 VR Mean R-Square Coeff Var Root MSE 0.976048 8.670760 2.449490 28.25000 DF Source Mean Square F Value Pr > FAnova SS TRAT 3 636.5000000 212.1666667 35.36 0.0003 LIN 3 89.000000 29.6666667 4.94 0.0462 COL 3 741.5000000 247.1666667 41.19 0.0002 Tukey's Studentized Range (HSD) Test for VR NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. 0.05 Alpha Error Degrees of Freedom 6 Error Mean Square 6 Critical Value of Studentized Range 4.89559 Minimum Significant Difference 5.9959 Means with the same letter are not significantly different. TRAT Tukey Grouping Mean Ν 34.500 4 С А 34.250 А 4 Α В 24.250 4 D

3.4 Estudo do experimento após a ANAVA

Ao realizar um experimento, o pesquisador está interessado em averiguar a hipótese nula global (H_0) que estabeleceu. Duas hipóteses, portanto, são formuladas, as quais são:

 H_0 : $\mu_1 = \mu_2, \ldots = \mu_n,$ H_1 : Pelo menos um contraste $\mu_i - \mu_j \neq 0, \ i \neq j = 1, 2, \ldots, n,$

em que $\mu_1, \mu_2, \ldots, \mu_n$ são as *n* médias de *n* populações.

A hipótese nula é verificada pelo teste F. Caso a hipótese H_0 seja rejeitada, indagamos a que se devem as diferenças, ou quais são os níveis desse fator que diferem entre si? Assim, qual o método mais coerente de realizar essas comparações? Com relação a esse último questionamento, podemos decidir o método da seguinte forma:

- 1. Se os níveis do fator são quantitativos, o estudo de regressão é o mais apropriado;
- 2. Caso os níveis do fator sejam qualitativos e não estruturados, os métodos de comparações múltiplas (Teste de médias) são os mais recomendados.

A seguir, iremos mostrar por meio dos exemplos, essas duas metodologias após a análise de variância. Inicialmente, iremos falar do teste de médias.

3.4.1 Teste de médias

Quando os níveis do fator são qualitativos e não estruturados, usamos os testes de comparações múltiplas ou teste de médias. Diversos testes foram propostos nessa área, mas nenhum até hoje, conseguiu chegar no patamar de um teste ideal, que é um teste com alto poder e baixo erro tipo I. Até os dias atuais, a área de comparações múltiplas está em aberto, pois todos os testes que já foram propostos, apresentam suas limitações. Assim, buscando os testes mais conhecidos e utilizados, apresentaremos: teste Tukey, teste SNK, teste t de Student, teste t de Bonferroni, teste Scott-Knott, teste Scheffé e teste Dunnett. As soluções serão feitas de forma analítica, por meio de rotinas no R e SAS, e no Sisvar.

A seguir, ilustraremos um exemplo de experimento, para a abordagem dos testes.

Exemplo 3.5: IVA - índice de envelhecimento acelerado de sementes

Num experimento conduzido em laboratório de sementes, foi avaliado o efeito de quatro reguladores de crescimento na germinação e outras características de sementes de milho. As condições experimentais eram homogêneas permitindo usar o delineamento inteiramente casualizado com cinco repetições e a unidade experimental constituiu-se de uma bandeja com 50 sementes. Os tratamentos avaliados foram os seguintes:

- A Simulate;
- B Booster;
- C 1/2 Simulate + 1/2 Cellerate;
- D Cellerate.

68

Capítulo 3. Exemplos Resolvidos

Os resultados obtidos para o "IVA - índice de envelhecimento acelerado das sementes" foram os seguintes:

Tratamentos	Repetições				
	1	2	3	4	5
A	40,2	49,3	40,1	43,0	52,4
В	42,0	44,5	$53,\!0$	$54,\!5$	$51,\!0$
\mathbf{C}	47,1	$55,\!5$	58,3	53,4	45,7
D	38,1	45,9	43,7	$40,\!6$	36,7

- a) Faça a análise de variância e aplique o teste F. Discuta os resultados;
- b) Aplique os testes de comparações múltiplas: Tukey, SNK, t, t de Bonferroni, Skott-Knott ao nível de significância de 5% de probabilidade;
- c) Formule contrastes e aplique o teste de Scheffé, t
 e F $(\alpha=0,05),$ fazendo as seguintes avaliações:
 - avaliar os produtos "Stimulate" e "Cellerate" fornecidos isoladamente e misturados: $Y_1 = 1/3\hat{m}_A 1\hat{m}_B + 1/3\hat{m}_C + 1/3\hat{m}_D$;
 - avaliar o produto "Booster" contra os demais produtos: $Y_2 = 1/2\hat{m}_A 1\hat{m}_C + 1/2\hat{m}_D;$
 - avaliar os produtos isolados "Stimulate" e "Cellerate": $Y_1 = 1\hat{m}_A 1\hat{m}_D$.
- d) Aplique o teste Dunnett ao nível de 5% de probabilidade, supondo que o tratamento A seja a testemunha

A primeira solução abordada será de forma analítica, como segue.

3.4.1.1 Solução analítica

Solução:

a) Levantando as hipóteses, temos:

- H_0 : Os reguladores de crescimento apresentam mesmo efeito ao IVA nas sementes;
- H_a : Pelo menos dois reguladores de crescimento apresentam efeitos diferentes ao IVA nas sementes.

Vamos apresentar os dados do IVA dos quatro reguladores de crescimento, por meio de uma tabela simplificada:

	Repetições					
Tratamentos	1	2	3	4	5	Total
Α	40,2	49,3	40,1	43,0	52,4	$225,\!00$
В	42,0	44,5	$53,\!0$	$54,\!5$	$51,\!0$	$245,\!00$
\mathbf{C}	47,1	$55,\!5$	58,3	$53,\!4$	45,7	260,00
D	38,1	$45,\!9$	43,7	$40,\!6$	36,7	$205,\!00$

A partir de agora, iremos desenvolver a análise de variância. Calculando inicialmente a correção, temos:
$$C = G^2/IJ$$

= 935,00²/20
= 43711,25.

Posteriormente, as somas de quadrados:

$$SQ_{tot} = (40, 2^{2} + 49, 3^{2} + ... + 40, 6^{2} + 36, 7^{2}) - C$$

$$= 44474, 76 - C$$

$$= 763, 51,$$

$$SQ_{trat} = \frac{1}{5}(225, 00^{2} + 245, 00^{2} + 260, 0^{2} + 205, 00^{2}) - C$$

$$= 44055, 00 - C$$

$$= 343, 75,$$

$$SQ_{res} = SQ_{tot} - SQ_{trat}$$

$$= 419, 76$$

O cálculo dos quadrados médios das fontes de variação, basta dividir a soma de quadrado pelo seu respectivo grau de liberdade, o qual é apresentado na tabela de análise de variância a seguir.

 Tabela 1: Análise de variância do IVA para os quatro reguladores de crescimento de

			sementes.			
FV	GL	SQ	QM	Teste F	F tab	Valor-p
Tratamentos	3	$343,\!75$	$114,\!58$	$4,37^{*}$	3,24	0,0199
Resíduo	16	419,76	$26,\!24$	-	-	
TOTAL	19	763,51	-	-	-	

Percebemos pela análise de variância que pelo menos dois reguladores de sementes apresentam efeitos diferentes no IVA, ao nível de significância de 5% de probabilidade.

A precisão do experimento é calculado da seguinte forma:

$$CV = \frac{\sqrt{QME}}{MG} \times 100,$$

sendo MG a média geral do experimento, isto é,

$$MG = \frac{41, 0 + 45, 0 + 49, 0 + 52, 0}{20}$$

= 46,8 unid.,

e oQME, é o quadrado médio do resíduo apresentado na Tabela 1. Assim, o CV é calculado

$$CV = \frac{\sqrt{26, 24}}{46, 8} \times 100$$

= 10,96%.

O experimento apresenta boa precisão, pois $10 < CV \le 20\%$.

b) Apresentando os testes de médias, a começar pelo teste Tukey. Inicialmente, iremos calcular a diferença mínima significativa (Δ) ,

$$\Delta = q_{(\alpha;n,\nu)} \times \sqrt{\frac{QME}{r}},$$

em que $q_{(\alpha;n,\nu)}$ é o quantil da distribuição da amplitude estudentizada, ao nível de α % de significância, n é o número de tratamentos, ν é o número de graus de liberdade do resíduo, QME é o quadrado médio do resíduo, e r é o número de repetições do tratamento. O valor de $q_{(\alpha,n,\nu)}$ pode ser encontrado por meio de tabelas, ou softwares. Assim, segue o algoritmo para a aplicação do teste tukey:

- 1. as médias dos tratamentos devem ser ordenadas: $\overline{Y}_1, \overline{Y}_2, \dots, \overline{Y}_n$;
- 2. a "diferença" mínima significativa é calculada por:

$$\Delta = \underbrace{q_{(0,05;4,16)}}_{4,05} \times \sqrt{\frac{26,24}{5}} = 9,28 \ unid..$$

- 3. somando-se Δ à menor média, obtendo-se $\overline{Y}_1 + \Delta$; as medias abrangidas por essa soma são unidas por um traço e são consideradas estatisticamente não diferentes;
- 4. o processo é continuado com a média seguinte, segunda menor, obtendo-se $Y_2 + \Delta$; as médias ordenadas abrangidas por essa soma são unidas por um traço; se algum traço ficar contido dentro de outro traço, já existente, que liga duas médias ordenadas, ele deve ser eliminado;
- 5. repete-se o passo (4), considerando $\overline{Y}_3 + \Delta$, $\overline{Y}_4 + \Delta$, ..., $\overline{Y}_{n-1} + \Delta$, eliminando-se os traços contidos dentro de outros traços que ligam duas médias ordenadas;
- 6. identificar os traços remanescentes por letras, formando-se, assim, os grupos de médias que não diferem significativamente no nível nominal de significância α .

Fazendo a tabela de médias, temos:

	medias do 1711 para os reguladores de sementes.		
Tratamentos	Médias	Teste Tukey	
D	41,0	b	
А	45,0	b a	
В	49,0	b a	
\mathbf{C}	52,0	a	

 Tabela 2: Médias do IVA para os reguladores de sementes

De acordo com o teste Tukey, ao nível de significância de 5% de probabilidade, conclui-se que os reguladores A, B e C apresentam o IVA médio de sementes superior ao regulador D.

Teste SNK

O teste SNK é similar ao teste Tukey, a diferença entre os dois testes verificado é observado na diferença mínima significativa, que no caso do teste SNK, será calculada de acordo com o número de médias ordenadas envolvidas na comparação e na forma específica em que se aplica essa diferença mínima significativa. Assim, segue os passos para a execução do teste:

- 1. as médias dos tratamentos devem ser ordenadas: $\overline{Y}_1, \overline{Y}_2, \ldots, \overline{Y}_n$;
- 2. a diferença mínima significativa Δ_k é calculada para o grupo envolvendo k médias ordenadas por:

$$\Delta_k = q_{(\alpha;\nu,k)} \sqrt{QME/r}; \tag{3.10}$$

nesse primeiro passo, todas as n médias ordenadas são consideradas, então k = n;

- 3. soma-se Δ_k à menor média, obtendo-se $\overline{Y}_1 + \Delta_k$; se as k médias ordenadas forem abrangidas por essa soma, então são unidas por um traço e são consideradas estatisticamente não diferentes; caso contrário, elas não são unidas por um traço; essa é uma diferença entre esse teste e o anterior. No anterior, deve-se unir qualquer grupo que venha a ser formado e não necessariamente as médias ordenadas envolvendo uma distância k, como esse caso;
- 4. o processo é continuado com os grupos envolvendo k = n-1 médias. Assim, faz-se k = n-1 e aplica-se a fórmula (3.10), para se obter a diferença mínima significativa entre k-1 médias, Δ_{n-1} . Assim, obtém-se a soma $\overline{Y}_1 + \Delta_{n-1}$, para se comparar as médias envolvendo a menor e a penúltima menor médias; se a média \overline{Y}_{n-1} for alcançada (suplantada ou igualada) por essa soma, as médias $\overline{Y}_1 \in \overline{Y}_{n-1}$ são unidas por um traço; aplica-se também o mesmo procedimento para a outra possibilidade de agrupamento, envolvendo a segunda menor e a última médias. Assim, obtém-se $\overline{Y}_2 + \Delta_{n-1}$; se a média \overline{Y}_n for alcançada (suplantada ou igualada) por essa soma, as médias \overline{Y}_2 e \overline{Y}_{n-1} são unidas por um traço; se algum traço ficar contido dentro de outro traço já existente que liga duas médias ordenas, ele deve ser eliminado;
- 5. repete-se o passo (4), considerando as 3 comparações envolvendo k = n 2 médias ordenadas, usando Δ_{n-2} , as 4 comparações envolvendo k = n 3 médias ordenadas, usando Δ_{n-3} e, assim sucessivamente até as n 1 comparações envolvendo k = 2 médias ordenadas, usando Δ_2 , tomando-se o cuidado de eliminar os traços contidos dentro de outros traços que ligam duas médias ordenadas;
- 6. identificar os traços remanescentes por letras, formando-se, assim, os grupos de médias que não diferem significativamente no nível nominal de significância α .

Agora, iremos calcular a Δ_k :

$\mathbf{N}^{\mathbf{o}}$ de médias (k)	\mathbf{q}	$\Delta_{ m k}$
4	$4,\!05$	$9,\!27$
3	$3,\!65$	8,36
2	$3,\!00$	$6,\!87$

Fazendo a tabela de médias, temos:

Capítulo 3. Exemplos Resolvidos

Tabela 2: Médias do IVA para os reguladores de sementes.		
Tratamentos	Médias	Teste Tukey
D	41,0	b
А	45,0	b a
В	49,0	b a
\mathbf{C}	52,0	a

De acordo com o teste SNK, ao nível de significância de 5% de probabilidade, conclui-se que os reguladores A, B e C apresentam o IVA médio de sementes superior ao regulador D.

Teste t

O teste t serve para testar médias de dois tratamentos ou médias de dois grupos de tratamentos. O cálculo desse teste é dado pelo seguinte algoritmo,

- 1. as médias dos tratamentos devem ser ordenadas: $\overline{Y}_1, \overline{Y}_2, \ldots, \overline{Y}_n$;
- 2. a "diferença" mínima significativa é calculada por:

$$\Delta = t_{(\nu,\alpha/2)}\sqrt{2}\sqrt{\frac{QME}{r}},$$

em que o valor $t_{(\nu,\alpha/2)}$ representa o quantil da distribuição de t de student com ν graus de liberdade, que deixa uma área (probabilidade) acima do mesmo de $\alpha/2$.

- 3. somando-se Δ à menor média, obtendo-se $\overline{Y}_1 + \Delta$; as medias abrangidas por essa soma são unidas por um traço e são consideradas estatisticamente não diferentes;
- 4. o processo é continuado com a média seguinte, segunda menor, obtendo-se \overline{Y}_2 + Δ ; as médias ordenadas abrangidas por essa soma são unidas por um traço; se algum traço ficar contido dentro de outro traço, já existente, que liga duas médias ordenadas, ele deve ser eliminado;
- 5. repete-se o passo (4), considerando $\overline{Y}_3 + \Delta, \overline{Y}_4 + \Delta, \dots, \overline{Y}_{n-1} + \Delta$, eliminando-se os traços contidos dentro de outros traços que ligam duas médias ordenadas;
- 6. identificar os traços remanescentes por letras, formando-se, assim, os grupos de médias que não diferem significativamente no nível nominal de significância α .

Usando esses passos, temos que a DMS calculada foi:

$$\Delta = \underbrace{t_{(16;0,05/2)}}_{2,12} \sqrt{2} \sqrt{\frac{26.235}{5}} = 6,87.$$

Assim, a tabela de médias fica

Tabela 2: M	Tabela 2: Médias do IVA para os reguladores de sementes.		
Tratamentos	Médias	Teste Tukey	
D	41,0	С	
А	45,0	c b	
В	49,0	b a	
\mathbf{C}	52,0	a	

De acordo com o teste t, ao nível de significância de 5% de probabilidade, conclui-se que os reguladores A, B apresentam o IVA médio de sementes superior aos demais. Os reguladores C e D apresentam o mesmo efeito quanto ao IVA médio de sementes.

Teste t de Bonferroni

Um problema do teste t é ter uma alta taxa de erro tipo I por experimento. Como alternativa, usamos uma proteção de Bonferroni. Essa proteção se baseia na alteração do nível de significância (α) para a determinação do quantil da distribuição t, dividindose o nível nominal pelo número de inferências que serão realizadas. Assim, a diferença mínima significativa do teste t de Binferroni é:

$$\Delta = t_{(\nu;\alpha_p/2}\sqrt{2}\sqrt{\frac{QME}{r}},$$

em que $\alpha_p = 2\alpha/[n(n-1)]$. Assim, segue o algoritmo para o teste tukey:

- 1. as médias dos tratamentos devem ser ordenadas: $\overline{Y}_1, \overline{Y}_2, \ldots, \overline{Y}_n$;
- 2. a "diferença" mínima significativa é calculada por:

$$\Delta = t_{(\nu;\alpha_p/2)}\sqrt{2}\sqrt{\frac{QME}{r}},$$

em que o valor $t_{(\nu,\alpha/2)}$ representa o quantil da distribuição de t de student com ν graus de liberdade, que deixa uma área (probabilidade) acima do mesmo de $\alpha/2$.

- 3. somando-se Δ à menor média, obtendo-se $\overline{Y}_1 + \Delta$; as medias abrangidas por essa soma são unidas por um traço e são consideradas estatisticamente não diferentes;
- 4. o processo é continuado com a média seguinte, segunda menor, obtendo-se $\overline{Y}_2 + \Delta$; as médias ordenadas abrangidas por essa soma são unidas por um traço; se algum traço ficar contido dentro de outro traço, já existente, que liga duas médias ordenadas, ele deve ser eliminado;
- 5. repete-se o passo (4), considerando $\overline{Y}_3 + \Delta$, $\overline{Y}_4 + \Delta$, ..., $\overline{Y}_{n-1} + \Delta$, eliminando-se os traços contidos dentro de outros traços que ligam duas médias ordenadas;
- 6. identificar os traços remanescentes por letras, formando-se, assim, os grupos de médias que não diferem significativamente no nível nominal de significância α .

Usando esses passos, temos que a DMS calculada foi:

$$\Delta = \underbrace{t_{(16;\alpha_p/2)}}_{3,01} \sqrt{2} \sqrt{\frac{26.235}{5}} = 9,75,$$

em que $a_p = 2 \times 0,05/[4(4-1)] = 0,00833$ Assim, a tabela de médias fica

Tabela 2: Médias do IVA para os reguladores de sementes.

Tratamentos	Médias	Teste Tukey
D	41,0	b
А	45,0	b a
В	49,0	b a
\mathbf{C}	52,0	a

De acordo com o teste t de Bonferroni, ao nível de significância de 5% de probabilidade, conclui-se que os reguladores A, B e C apresentam o IVA médio de sementes superior ao regulador D.

Teste Scott-Knott

O teste Scott-Knott tem como base o uso da razão de verossimilhança para testar a significância de que os n tratamentos pode ser divididos em dois grupos que maximizem a soma de quadrados entre grupos. Assim, segue o algoritmo para o teste:

- 1. as médias dos tratamentos devem ser ordenadas: $\overline{Y}_1, \overline{Y}_2, \ldots, \overline{Y}_n$. Nessa situação, o número de partições é n-1. Inicialmente o número de tratamentos é g = n;
- 2. determinar a partição entre dois grupos que maximize a soma de quadrados entre grupos. Essa soma de quadrados será definida por β_0 , e será estimada da seguinte forma. Sejam $T_1 \in T_2$ os totais dos dois grupos com $k_1 \in k_2$ tratamentos em cada um.

$$\beta_0 = \frac{T_1^2}{k_1} + \frac{T_2^2}{k_2} - \frac{(T_1 + T_2)^2}{k_1 + k_2},$$
$$T_1 = \sum_{i=1}^{k_1} \overline{Y}_{(i)} \quad \text{e} \quad T_2 = \sum_{i=k_1+1}^{g} \overline{Y}_{(i)},$$

em que $\overline{Y}_{(i)}$ é a média do tratamento da posição ordenada *i*. Os dois grupos deverão ser identificados por meio da inspeção das somas de quadrados das g - 1 partições possíveis, sendo g o número de tratamentos envolvidos no grupo de médias considerado;

3. determinar o valor da estatística λ da seguinte forma:

$$\lambda = \frac{\pi}{2(\pi - 2)} \times \frac{\beta_0}{\hat{\sigma}_0^2},$$

em que $\hat{\sigma}_0^2$ é o estimador de máxima verossimilhança de $\sigma_{\overline{Y}}^2$. Seja $S_{\overline{Y}}^2 = QME/r$ o estimador não viesado de $\sigma_{\overline{Y}}^1$ e ν graus de liberdade associados a este estimador. Então,

$$\hat{\sigma}_0^2 = \frac{1}{g+\nu} \left[\sum_{i=1}^g (\overline{Y}_{(i)} - \overline{Y})^2 + \nu s_{\overline{Y}}^2 \right].$$

- 4. Se $\lambda \geq \chi^2_{(\alpha;g/(\pi-2))}$, rejeita-se a hipótese de que os dois grupos são idênticos em favor da hipótese alternativa de que os dois grupos diferem;
- 5. No caso de rejeitar essa hipótese, os dois subgrupos formados serão independentemente submetidos aos passos (i) a (iii), fazendo respectivamente $g = k_1 e g = k_2$. O processo em cada subgrupo se encerra ao se aceitar H_0 no passo (iii) ou se cada subgrupo contiver apenas uma média.

Seguindo esses passos, iremos realizar o teste. Sabemos pela análise de variância que o quadrado médio do erro foi 26,24 com 16 graus de liberdade, e as médias dos 4 tratamentos estimadas a partir de 5 repetições foram:

$$\overline{Y}_{(1)} = 41, 0 \qquad \overline{Y}_{(2)} = 45, 0$$

$$\overline{Y}_{(3)} = 49, 0 \qquad \overline{Y}_{(4)} = 52, 0.$$

Fazemos agora as partições para as somas de quadrado:

\mathbf{N}^{o} de partições	Р	artiç	ões
$1^{\underline{a}}$	D	VS	A,B,C
$2^{\mathbf{a}}$	DA	VS	BC
3ª	DAB	\mathbf{VS}	\mathbf{C}

• Calculando C:

$$C = \frac{(41, 0+45, 0+49, 0+52, 0)^2}{4} = \frac{34969, 00}{4} = 8742, 25;$$

vamos calcular as somas de quadrados de cada partição:

$$SQ_{1} = \beta_{0} = \frac{(41,0)^{2}}{1} + \frac{(45,0+49,0+52,0)^{2}}{3} - C = 44,08,$$

$$SQ_{2} = \beta_{0} = \frac{(41,0+45,0)^{2}}{2} + \frac{(49,0+52,0)^{2}}{2} - C = 56,25,$$

$$SQ_{3} = \beta_{0} = \frac{(41,0+45,0+49,0)^{2}}{3} + \frac{(52,0)^{2}}{1} - C = 36,75.$$

Dessa forma, a partição que maximizou a soma de quadrados entre grupos foi $SQ_2 = \beta_0 = 56,25$ e a média entre os quatro tratamentos foi $\overline{Y} = 46,8$. A estimativa $\hat{\sigma}_0^2$ é:

$$\hat{\sigma}_{0}^{2} = \frac{1}{g+\nu} \left[\sum_{i=1}^{g} (\overline{Y}_{(i)} - \overline{Y})^{2} + \nu s_{\overline{Y}}^{2} \right]$$

$$= \frac{1}{4+16} \left[\sum_{i=1}^{4} (\overline{Y}_{(i)} - \overline{Y})^{2} + 16 \times \frac{26, 24}{5} \right]$$

$$= \frac{1}{20} \left[(41, 0 - 46, 8)^{2} + (45, 0 - 46, 8)^{2} + \ldots + (52, 0 - 46, 8)^{2} + 83.97 \right]$$

$$= 7, 64.$$

Assim,

$$\lambda = \frac{\pi}{2(\pi - 2)} \times \frac{\beta_0}{\hat{\sigma}_0^2} \\ = \frac{\pi}{2(\pi - 2)} \times \frac{56, 25}{7, 64} = 10, 13$$

O valor de $\chi^2_{(0,05;4/(\pi-2))}$ é 8,67. Como $\lambda > 8,67$, rejeita-se H_0 , isto é, dois grupos são formados ao nível de 5% de probabilidade. Assim, o grupo 1 será formado pelos tratamentos D e A, e o grupo 2 com os tratamentos B e C. Esses dois grupos terão

letras diferentes. O procedimento é repetido agora dentro dos grupos. Dessa forma, podemos observar que esse procedimento não gerará ambiguidade nos resultados.

Realizando o mesmo procedimento para o grupo 1, temos:

${\rm N}^{\rm o}$ de partições	Pa	rtiçĉ	<i>bes</i>
1^{a}	D	VS	А

– Calculando C:

$$C = \frac{(41, 0+45, 0)^2}{2} = 3698, 0;$$

- vamos calcular as somas de quadrados de cada partição:

$$SQ_1 = \beta_0 = \frac{(41,0)^2}{1} + \frac{(45,0)^2}{1} - C = 8,00.$$

Dessa forma, a partição que maximizou a soma de quadrados entre grupos foi $SQ_1 = \beta_0 = 56, 25$ e a média entre os quatro tratamentos foi $\overline{Y} = 43, 0$. A estimativa $\hat{\sigma}_0^2$ é:

$$\hat{\sigma}_{0}^{2} = \frac{1}{g+\nu} \left[\sum_{i=1}^{g} (\overline{Y}_{(i)} - \overline{Y})^{2} + \nu s_{\overline{Y}}^{2} \right]$$

$$= \frac{1}{2+16} \left[\sum_{i=1}^{4} (\overline{Y}_{(i)} - \overline{Y})^{2} + 16 \times \frac{26,24}{5} \right]$$

$$= \frac{1}{18} \left[(41,0 - 43,0)^{2} + (45,0 - 43,0)^{2} + 83.97 \right]$$

$$= 5,11.$$

Assim,

$$\lambda = \frac{\pi}{2(\pi - 2)} \times \frac{\beta_0}{\hat{\sigma}_0^2} \\ = \frac{\pi}{2(\pi - 2)} \times \frac{8,00}{5,11} = 2,15.$$

O valor de $\chi^2_{(0,05;2/(\pi-2))}$ é 5,50. Como $\lambda < 5,50$, não há evidências para rejeitar H_0 . Assim, os tratamentos D e A apresentam efeitos iguais, e serão atribuídos a mesma letra.

Realizando o mesmo procedimento para o grupo 2, temos:

$\rm N^{o}$ de partições	Pa	rtiçĉ	<i>f</i> es
$1^{\underline{a}}$	В	\mathbf{VS}	С

– Calculando C:

$$C = \frac{(49, 0+52, 0)^2}{2} = 5100, 5;$$

vamos calcular as somas de quadrados de cada partição:

$$SQ_1 = \beta_0 = \frac{(49,0)^2}{1} + \frac{(52,0)^2}{1} - C = 4,50.$$

Dessa forma, a partição que maximizou a soma de quadrados entre grupos foi $SQ_1 = \beta_0 = 4,50$ e a média entre os quatro tratamentos foi $\overline{Y} = 50,5$. A estimativa $\hat{\sigma}_0^2$ é:

$$\begin{aligned} \widehat{\sigma}_0^2 &= \frac{1}{g+\nu} \left[\sum_{i=1}^g (\overline{Y}_{(i)} - \overline{Y})^2 + \nu s_{\overline{Y}}^2 \right] \\ &= \frac{1}{2+16} \left[\sum_{i=1}^4 (\overline{Y}_{(i)} - \overline{Y})^2 + 16 \times \frac{26,24}{5} \right] \\ &= \frac{1}{18} \left[(49,0-50,5)^2 + (52,0-50,5)^2 + 83.97 \right] \\ &= 4,91. \end{aligned}$$

Assim,

$$\lambda = \frac{\pi}{2(\pi - 2)} \times \frac{\beta_0}{\hat{\sigma}_0^2} \\ = \frac{\pi}{2(\pi - 2)} \times \frac{4,50}{4,91} = 1,26$$

O valor de $\chi^2_{(0,05;2/(\pi-2))}$ é 5,50. Como $\lambda < 5,50$, não há evidências para rejeitar H_0 . Assim, os tratamentos B e C apresentam efeitos iguais, e serão atribuídos a mesma letra.

Fazendo a tabela de médias, temos:

	1 0	
Tratamentos	Médias	Teste Tukey
D	41,0	b
А	45,0	b
В	49,0	a
C	52,0	a

Tabela 2: Médias do IVA para os reguladores de sementes.

c) A grande diferença entre o teste F para desdobramento do tratamento e o teste Scheffé, é que o segundo pode ser usado para testar qualquer contraste entre médias de tratamentos, até mesmo duas a duas, não há restrição quanto a ortogonalidade dos contrastes. O teste Teste F, exige que cada comparação seja explicado por um contraste, e que estes sejam ortogonais entre si, para que as comparações sejam independentes. Vale ressaltar que após a decomposição dos graus de liberdade do tratamento, será atribuído a cada contraste 1 grau de liberdade. Um fato interessante, é que a aplicação do teste F é equivalente ao teste t, pois supondo uma variável aleatória X com distribuição $F_{1,\nu}$ com 1 grau de liberdade no tratamento e ν graus de liberdade no resíduo é equivalente a uma variável Y^2 , em que Y tem distribuição t com ν graus de liberdade.

3.4.1.2 Usando o SISVAR

A análise feita pelo Sisvar irá abordar os testes Tukey, SNK, Scott-Knott e Scheffé.

Sisvar:

Teste Tukey, SNK e Scott-Knott

Entrada de dados com a extensão aquivo.dbf, usando o programa BrOffice.org Calc. Inicialmente, a estrutura do arquivo para esse exemplo é dado a seguir.

	A	в
1	TRAT	IVA
2	А	40,2
3	А	49,3
4	А	40,1
5	А	43,0
6	А	52,4
7	В	42,0
8	В	44,5
9	В	53,0
10	В	54,5
11	В	51,0
12	С	47,1
13	С	55,5
14	С	58,3
15	С	53,4
16	С	45,7
17	D	38,1
18	D	45,9
19	D	43,7
20	D	40,6
21	D	36,7

Após digitado os dados, segue a exportação do arquivo do BrOffice para a extensão <>.dbf: Arquivo > Salvar como... > Salvar em: escolher o diretório > Tipo:dBASE(.dbf) > Nome: iva.dbf > Abrir. O arquivo está pronto para a análise no Sisvar.

Usando agora o sisvar, seguindo os passos:

Passo 1: Sisvar > Análise > Anava.

Passo 2: ...> Anava > Abrir arquivo.

	erro= Fim Adicionar
	Abrir arquivo Fechar arquivo
	Variaveis do arquivo

Passo 3: ...> Abrir arquivo > iva.dbf.

S Abrir			×
💮 🖟 • exem	nplos-resolvidos • exem-teste.medias	 Pesquisar exen 	n-teste.medias
Organizar 👻 Nova pe	asta		🖽 🔹 🛄 🔞
Downloads Dopbox Dopbox Docas Documentos Imagens Wideos Videos Grupo doméstico Computador	Nome *	Data de modificação 05/05/2014 22:26	Tipo Planiha do OpenDo
Backup (D:)			
	▼] ∢	DB e DBF files	(*.DB;*.DBF;*.db; 💌

Passo 4: Com o arquivo iva.dbf aberto no Sisvar, percebemos que as variáveis do arquivo são: TRAT (A - Stimulate; B - Booster; C - 1/2 Stimulate + 1/2 Cellerate; D - Cellerate) e VR (IVA - índice de envelhecimento acelerado das sementes).

S TABELA DE ANÁLISE DE VARIÂNCIA
TABELA DE ANÁLISE DE VARIÂNCIA
errou Firm Addionar • () Editar acquiro Variáveis do arquivo Variáveis do arquivo Variáveis do arquivo
Limpar Remover Digite as Fontes de Variação
Ajuda
é preferência aos duplos cliques nas variáveis ao invés de digitá-las

Passo 5: Adicionando a variável TRAT: em var	riáveis do	arqu	iivo, sel	ecione	e a variáv	vel
TRAT (1), e posteriormente, clique no botão	Adicionar	ou	Enter	(2).	Depois	de
adicionado, a variável torna-se visível em Tabe	ela de anál	ise	de var	iância	a (3) .	

Passo 6: Ao final desse passo, estamos prontos para terminar a adição de variáveis, já que em tabela de análise de variância inserimos a fonte de variação necessária, como visto na figura abaixo.

Passo 7: Para finalizarmos, basta apertar o botão Fim, do qual, abrirá uma janela perguntando: "Quer encerrar o quadro de análise de variância?". Em seguida, clique em Yes, seguindo para o próximo passo.

Passo 8: Esse passo, iremos apresentar como usar o teste de médias após a análise de variância. Inicialmente, apresentaremos o teste Tukey como primeiro teste. Assim, clique em TRAT, selecione o teste Tukey, indique o nível de significância: 0,05, e clique em Ok.

TRAT		
	Teste escolhido O Nenhum teste	
	C Teste de tus Ponferroni C Teste de tus Ponferroni C Teste (LSD)	
	C Contrastes C Regressão	
	Nível de significância: 0.05	

Em nenhum exercício resolvido, foi comentado que poderemos pedir mais de um teste antes de finalizar a análise. Como estamos apresentando os testes de comparações do tipo MCA (comparação múltipla com todos os pares), vamos fazer diversos testes de uma só vez.

Passo 9: Clicando novamente em TRAT, selecione agora o teste SNK, indique o nível de significância: 0,05, e clique em Ok, da mesma forma como feito no passo 8. Novamente, faremos esse mesmo procedimento e selecionaremos o teste Scott Knott, indique o nível de significância: 0,05, e clique em Ok.

Passo 10: Nesse penúltimo passo, temos que agora apenas inserir a variável resposta. Dessa forma, clique em VR e finalize a análise Finalizar.

Passo 11: Antes de finalizar a análise, é perguntado se deseja fazer transformação nos dados. Isso ocorre, quando o resíduo não atende às pressuposições da análise de variância. Nesse caso, não iremos fazer transformação. Portanto, clique em Finalizar.

Ao final de todos esses passos, é exibido um relatório com todas as análises escolhidas.

TABELA DE ANÁLISE DE VARIÂNCIA `_____ GL SQ QM Fc Pr>Fc F۷ TRAT 343.750000 114.583333 4.368 0.0199 2 16 419,760000 26.235000 erro ____ -----_____ 19 Total corrigido 763.510000 CV (%) = Média geral: 10,96 46.7500000 Número de observações: 20 Teste Tukey para a FV TRAT DMS: 9,27106763010852 NMS: 0,05 número de repetições (r): 5 Erro padrão: 2,29063310025853 Tratamentos Médias Resultados do teste 41.000000 a1 45.000000 a1 a2 49.000000 a1 a2 52,000000 a2 Teste SNK para a FV TRAT Médias DM: DMS NMS: 0,05 -----9,27106763010852 8,36309597039937 6,86731548561222 número de repetições (r): 5 Erro padrão: 2,29063310025853 Tratamentos Médias Resultados do teste 41.000000 a1 45.000000 a1 a2 49.000000 a1 a2 52,000000 a2 _____ Teste Scott-Knott (1974) para a FV TRAT NMS: 0,05 número de repetições (r): 5 Erro padrão: 2,29063310025853 Tratamentos Médias Resultados do teste _____ 41.000000 a1 45.000000 a1 49.000000 a2 52.000000 a2

Teste Scheffé e desdobramento do tratamento em contraste ortogonais via teste F

Testes de comparações envolvendo mais de duas médias serão apresentados a seguir. Apresentaremos o teste de Scheffé e o desdobramento do tratamento em contrastes via teste F. Sabemos que considerando I tratamentos, poderemos ter (I - 1) contrastes. Os **passos** de **1** a **7** são os mesmos. Ao chegar no **passo 8**, clique em **TRAT**, selecione a opção **Contrastes**, indique o nível de significância: 0,05, e clique em **Ok**.

Passo 9: Insira a variável resposta, clicando em VR e finalize a análise Finalizar. Aparecerá uma nova opção perguntando deseja fazer alguma transformação nos dados. Em nosso caso, não iremos fazer transformação, portanto, clique em Finalizar.

Passo 10: Após finalizar, como selecionamos a opção **Contrastes**, será pedido para inserir os contrastes desejados. Os três contrastes desejados são:

- 1º Contraste: $Y_1 = 1/3\hat{m}_A 1\hat{m}_B + 1/3\hat{m}_C + 1/3\hat{m}_D;$
- 2º Contraste: $Y_2 = 1/2\hat{m}_A 1\hat{m}_C + 1/2\hat{m}_D;$
- 3° Contraste: $Y_3 = 1\hat{m}_A 1\hat{m}_D$.

Porém, no sisvar exige que os coeficientes dos contrastes sejam valores inteiros. Assim,

•

- 1º Contraste: $Y_1 = 1\hat{m}_A 3\hat{m}_B + 1\hat{m}_C + 1\hat{m}_D;$
- 2° Contraste: $Y_2 = 1\hat{m}_A 2\hat{m}_C + 1\hat{m}_D;$
- 3° Contraste: $Y_3 = 1\hat{m}_A 1\hat{m}_D$.

1º Contraste: Digite o valor do coeficiente de cada tratamento e clique | Acrescentar

Após inserir todos os coeficientes, clique em Novo contraste para inserir o segundo contraste.

O procedimento para inserir os demais contrastes é o mesmo. Quando um tratamento não estiver incluso no contraste, é atribuído o valor 0 para o coeficiente. Após digitado o último contraste, clique em Finalizar para concluir a análise.

Ao final de todos esses passos, é exibido um relatório com todas as análises escolhidas.

Vamos fazer algumas observações nesses resultados. Vamos tomar por base o primeiro contraste, $Y_1 = 1\hat{m}_A - 3\hat{m}_B + 1\hat{m}_C + 1\hat{m}_D$;, sendo o resultado mostrado abaixo

1	
CONTRASTE NÚMERO 1	
Nível dessa Fonte de Variação Coe	ficientes
а А В С D	1.0000 -3.0000 1.0000 1.0000
Obs. Valores dos coeficientes positi 3 e os negativos por 3	vos foram divididos por
Estimativa : -3.000000 DMS Scheffé : 0,05 Variància : 0,05 trro padrão : 2.644995 t para H0: Y = 0 : -1.1 Pr> t : 0.2 F para H0: Y = 0 : 1.2 Pr>= V = 0 : 1.2 Pr>= 0 : 0.2 Pr= vata Scheffé : 0.7	00 37 00 27 34 73 86 73 34 34

Observe, inicialmente que os valores dos coeficientes do primeiro contraste (cor vermelha) foram divididos pelo mínimo múltiplo comum (mmc) entre os coeficientes do contraste 1 (cor amarela). Obviamente, a estimativa do contraste (cor azul) é resultante do seguinte contraste: $Y_1 = 1/3\hat{m}_A - 1\hat{m}_B + 1/3\hat{m}_C + 1/3\hat{m}_D$, isto é, $Y_1 = 1/3 \times 45, 0 - 1 \times 49, 0 + 1/3 \times 52, 0 + 1/3 \times 41, 0 = -3$. Para entendermos o porquê desse procedimento feito pelo Sisvar, considere o estudo do contraste 1, em que o objetivo foi verificar se o regulador Booster tem efeito superior aos demais. Assim, a título de exemplo, vamos considerar que o efeito médio (\hat{m}_o) dos reguladores sejam iguais, exceto o efeito médio (\hat{m}_b) do regulador Booster. Dessa forma, temos $Y_1 = 1/3\hat{m}_o - 1\hat{m}_b + 1/3\hat{m}_o + 1/3\hat{m}_o = \hat{m}_o - \hat{m}_b$. Isso implica na prática, saber se a diferença desses dois grupos é significativo ou não, isto é, sendo a estimativa do contraste $Y_1 = -3$, implica dizer que a diferença em 3 unidades do efeito médio do regulador Booster com o efeito médio do outro grupo poderá significativo ou não. Portanto, a estimativa do contraste passa a ser um resultado compreensível do ponto de vista prático, para o pesquisador. Caso, tivéssemos usado o contraste original, teríamos $Y_1 = 1\hat{m}_o - 3\hat{m}_b + 1\hat{m}_o + 1\hat{m}_o = 3(\hat{m}_o - \hat{m}_b)$. A interpretação seria saber se três vezes a diferença do efeito médio desses dois grupos teriam efeito significativo ou não, não haveria sentido prático nisso. Portanto, a lógica do Sisvar é tornar a estimativa do contraste ter um significado prático.

Outra informação interessante no resultado do Sisvar, é que não necessariamente precisaremos pelo Teste Scheffé, comparar a estimativa com a DMS Scheffé para saber se o contraste é significativo ou não. Podemos utilizar o valor-p exato do teste (cor cinza). Isso nos dar a autonomia de determinar o nível de significância a adotar, não sendo simplesmente $\alpha = 0,05$.

No caso do teste F e t, considerando que cada contraste tem apenas 1 grau de liberdade, torna esses testes equivalentes, já que, com 1 grau de liberdade no contraste, o valor da estatística t ao quadrado (cor azul escuro) é igual a estatística do teste F (cor verde), isto é, $(-1, 134)^2 = 1, 286$.

Por fim, observe que os teste F e Scheffé são testes em que suas metodologias são diferentes, já que o segundo é baseado numa distribuição proporcional a distribuição F. Outra diferença, é quanto ao contraste, o teste F exige que os contrastes sejam ortogonais entre si, já o teste Scheffé não, qualquer contraste pode ser utilizado. O rigor desse teste é maior do que o teste F, assim, em alguns momentos, podemos nos deparar com um contraste em que o teste Scheffé não detectou significância e o teste F detectou. Por isso, é bom usar o bom censo, em ter conhecimento realmente do tipo de estudo do

seu experimento, como também do teste utilizado.

3.4.1.3 Usando o R - Criando as rotinas

3.4.1.4 Usando o R - Rotinas de pacotes

```
Código R: Usando rotinas de pacotes
#Relizando a limpeza de dados no R
#Remover dados:
rm(list=ls())
#Diretório:
setwd("D:/PROJETOS/EXPERIMENTAL/EXPERIMENTAL -
      APOSTILA/exemplos-resolvidos/exem-teste.medias")
#Lendo dados:
dados <- read.table("iva.txt",h=T)</pre>
#transformando TRAT em fator
dados$TRAT <- as.factor(dados$TRAT)</pre>
#Analise de variancia:
anav <- aov(VR~TRAT,data=dados)
anava <- anova(anav);anava
Analysis of Variance Table
Response: VR
         Df Sum Sq Mean Sq F value Pr(>F)
         3 343.75 114.583 4.3676 0.0199 *
TRAT
Residuals 16 419.76 26.235
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(agricolae)
teste.tukey1 <- HSD.test(y=dados$VR,trt=dados$TRAT,DFerror=anava$Df[2],</pre>
                      MSerror=anava$Mean[2],alpha=0.05,group=T,
                      main="Efeito do IVA no cresc de sem");
teste.tukey1
#obs.: group=T implica em aparecer as letras
      group=F implica nos intervalos de confiança
#
$statistics
  Mean
            CV MSerror
                           HSD
```

```
46.75 10.95617 26.235 9.268115
$parameters
  Df ntr StudentizedRange
  16
       4
                  4.046093
$means
  dados$VR
                 std r Min Max
        45 5.574495 5 40.1 52.4
Α
В
        49 5.465803 5 42.0 54.5
С
        52 5.422177 5 45.7 58.3
        41 3.819686 5 36.7 45.9
D
$comparison
NULL
$groups
  trt means M
    С
         52 a
1
2
    В
         49 ab
3
         45 ab
    Α
4
    D
         41 b
#Visualizacao grafica do teste Tukey:
#teste de Tukey apresentado por meio de intervalos de confiança.
#Interpretacao: se o intervalo de confiança para a diferenca entre duas
#médias nao incluir o valor zero, rejeita-se a hipotese nula,
#caso contrario, nao ha evidencias para rejeitar HO.
#graf 1:
graf.tukey1 <- TukeyHSD(anav)</pre>
plot(graf.tukey1)
                                  95% family-wise confidence level
                           A-
                           D-A C-A
                           8
                           D-C D-B
#grafico em barras, acrescido das letras
#graf 2:
graf.tukey2 <- bar.group(teste.tukey1$group,horiz=TRUE,density=8,</pre>
                            col="blue",border="red",xlim=c(0,60))
```

```
ab
                                         ah
                    0
                       10
                               30
                                   40
                           20
                                       50
                                           60
library(agricolae)
teste.snk <- SNK.test(y=dados$VR,trt=dados$TRAT,DFerror=anava$Df[2],</pre>
                     MSerror=anava$Mean[2],alpha=0.05,group=T,
                     main="Efeito do IVA no cresc de sem");
teste.snk
#obs.: group=T implica em aparecer as letras
#
      group=F implica nos intervalos de confiança
$statistics
  Mean
           CV MSerror
 46.75 10.95617 26.235
$parameters
 Df ntr
 16
     4
$SNK
    Table CriticalRange
2 2.997999
             6.867315
3 3.649139
             8.358838
4 4.046093
             9.268115
$means
 dados$VR
             std r Min Max
      45 5.574495 5 40.1 52.4
Α
      49 5.465803 5 42.0 54.5
В
С
      52 5.422177 5 45.7 58.3
D
      41 3.819686 5 36.7 45.9
$comparison
NULL
```

\$groups trt means М 1 С 52 a 2 В 49 ab 3 А 45 ab 4 D 41 b #grafico: graf.snk <- bar.group(teste.snk\$group,horiz=TRUE,density=8,</pre> col="blue",border="red",xlim=c(0,60)) ab ah а ()0 10 20 30 40 50 60 library(agricolae) teste.t <- LSD.test(anav,"TRAT",alpha=0.05,group=T,</pre> main="Efeito do IVA no cresc de sem"); teste.t #obs.: group=T implica em aparecer as letras group=F implica nos intervalos de confiança # \$statistics Mean CV MSerror LSD 46.75 10.95617 26.235 6.867315 \$parameters Df ntr t.value 16 4 2.119905 \$means VR std r LCL UCL Min Max A 45 5.574495 5 40.14407 49.85593 40.1 52.4 B 49 5.465803 5 44.14407 53.85593 42.0 54.5 C 52 5.422177 5 47.14407 56.85593 45.7 58.3

```
D 41 3.819686 5 36.14407 45.85593 36.7 45.9
$comparison
NULL
$groups
 trt means M
1
   С
       52 a
2
  В
     49 ab
3
     45 bc
  Α
4
   D
     41 c
#grafico:
graf.t <- bar.group(teste.t$group,horiz=TRUE,density=8,</pre>
                     col="blue",border="red",xlim=c(0,60))
                                    50
                                  40
                               30
library(ScottKnott)
teste.sk <- SK(dados$TRAT,dados$VR, model='dados$VR ~ dados$TRAT',</pre>
            which='dados$TRAT',
            error='Within', sig.level=0.05)
teste.sk
$av
Call:
  aov(formula = dados$VR ~ dados$TRAT, data = dat)
Terms:
             dados$TRAT Residuals
Sum of Squares
                343.75
                         419.76
Deg. of Freedom
                    3
                            16
Residual standard error: 5.122011
Estimated effects may be unbalanced
$groups
[1] 1 1 2 2
```

```
$nms
[1] "A" "B" "C" "D"
$ord
[1] 3 2 1 4
$m.inf
 mean min max
 52 45.7 58.3
С
B 49 42.0 54.5
A 45 40.1 52.4
D 41 36.7 45.9
$sig.level
[1] 0.05
attr(,"class")
[1] "SK" "list"
summary(teste.sk)
Levels Means SK(5%)
    С
        52
             а
    В
        49
             а
    Α
        45
             b
    D
        41
             b
#A analise do teste scheffe para o pacote agricolae, compara
#as medias dois a dois, na versao antiga do teste
#Teste Scheffe:
library(agricolae)
teste.sch <- scheffe.test(y=dados$VR,trt=dados$TRAT, DFerror=anava[2,1],</pre>
              MSerror=anava[2,3],Fc=anava[1,4],group=T,
              alpha=0.05);teste.sch
#obs.: group=T implica em aparecer as letras
#
     group=F implica nos intervalos de confiança
$statistics
 Mean
          CV MSerror CriticalDifference
 46.75 10.95617 26.235
                         10.09783
$parameters
```

```
Df ntr
             F Scheffe
 16
     4 3.238872 3.117148
$means
 dados$VR
             std r Min Max
      45 5.574495 5 40.1 52.4
А
В
      49 5.465803 5 42.0 54.5
С
      52 5.422177 5 45.7 58.3
D
      41 3.819686 5 36.7 45.9
$comparison
NULL
$groups
 trt means M
       52 a
1
   С
2
   В
       49 ab
3
   А
       45 ab
4
   D
       41 b
#grafico:
graf.sch <- bar.group(teste.sch$group,horiz=TRUE,density=8,</pre>
                col="blue",border="red",xlim=c(0,60))
                                    at
#Observando o gl do trat, percebemos que o n^{\circ} de contrastes
#ortogonais é igual a (gl_trat).
#Tratamentos:
#-----
#A - Stimulate
#B - Boster
#C - 1/2 Stimulate + 1/2 Cellerate
#D - Cellerate
#Sera realizado 3 contrastes:
```

```
# 1) Booster com os demais conjuntos:
#
                  Y1 = 1/3.A - 1.B + 1/3.C + 1/3.D
# 2) Simulate e Cellerate fornecidos isoladamente e misturado:
#
                  Y2 = 1/2.A + 0.B - 1.C + 1/2.D
# 3) Simulate com Cellerate:
                  Y3 = 1.A - 0.B - 0.C - 1.D
#
#
#a matriz de contraste, sendo gl.trat contrastes
cont.dados<-matrix(c(1/3,-1,1/3,1/3,
                                       #1° Contraste
                     1/2,0,-1,1/2,
                                      #2° Contraste
                     1,0,0,-1
                                       #3° Contraste
                     ),nrow=4,ncol=3,byrow=F);cont.dados
           [,1] [,2] [,3]
    0.3333333 0.5
[1,]
                       1
[2,] -1.0000000 0.0
                        0
[3,]
    0.3333333 -1.0
                       0
[4,] 0.3333333 0.5
                       -1
# Definindo os contrastes
contrasts(dados$TRAT) <- cont.dados</pre>
contrasts(dados$TRAT)
        [,1] [,2] [,3]
A 0.3333333 0.5
                  1
B -1.0000000 0.0
                   0
C 0.3333333 -1.0
                    0
D 0.3333333 0.5 -1
dados$TRAT
 [1] A A A A B B B B B C C C C C D D D D D
attr(,"contrasts")
        [,1] [,2] [,3]
A 0.3333333 0.5
                   1
B -1.0000000 0.0
                    0
C 0.3333333 -1.0
                    0
D 0.3333333 0.5
                   -1
Levels: A B C D
# Analise de variancia
anav.con <- aov(VR~TRAT,data=dados)</pre>
#Não houve mudança entre as anavas, observe:
anav.con
Call:
  aov(formula = VR ~ TRAT, data = dados)
```

```
Terms:
                TRAT Residuals
Sum of Squares 343.75
                      419.76
Deg. of Freedom
                   3
                           16
Residual standard error: 5.122011
Estimated effects are balanced
anav
Call:
  aov(formula = VR ~ TRAT, data = dados)
Terms:
                TRAT Residuals
Sum of Squares 343.75 419.76
Deg. of Freedom
                   З
                           16
Residual standard error: 5.122011
Estimated effects may be unbalanced
#contrastes:
anav.con$con #contraste escolhido
$TRAT
       [,1] [,2] [,3]
A 0.3333333 0.5
                  1
B -1.0000000 0.0
                   0
C 0.3333333 -1.0
                  0
D 0.3333333 0.5
                  -1
anav$con #contraste defaut
$TRAT
[1] "contr.treatment"
# Contrastes estabelecidos
#incluindo os dois primeiros contrastes
summary(anav.con,split=list(TRAT=list(C1=1,C2=2)))
          Df Sum Sq Mean Sq F value Pr(>F)
TRAT
           3 343.7 114.58 4.368 0.01990 *
          1 33.7
                    33.75 1.286 0.27341
 TRAT: C1
 TRAT: C2 1 270.0 270.00 10.292 0.00548 **
Residuals 16 419.8 26.23
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#incluindo os tres contrastes
summary(anav.con,split=list(TRAT=list(C1=1,C2=2, C3=3)))
        Df Sum Sq Mean Sq F value Pr(>F)
TRAT
           3
             343.7 114.58
                           4.368 0.01990 *
                     33.75
 TRAT: C1
           1
               33.7
                            1.286 0.27341
           1 270.0 270.00 10.292 0.00548 **
 TRAT: C2
           1 40.0
                     40.00
                           1.525 0.23474
 TRAT: C3
Residuals
          16 419.8
                     26.23
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Sera realizado 3 contrastes:
# 1) Booster com os demais conjuntos:
#
                Y1 = 1/3.A - 1.B + 1/3.C + 1/3.D
# 2) Stimulate e Cellerate fornecidos isoladamente e misturado:
#
                Y2 = 1/2.A + 0.B - 1.C + 1/2.D
# 3) Stimulate com Cellerate:
               Y3 = 1.A - 0.B - 0.C - 1.D
#
#
C <- rbind(" A, C, D vs B"=c(1/3,-1,1/3,1/3),
          " A, D vs C"=c(1/2,0,-1,1/2),
         " A vs D"=c(1,0,0,-1));C
                 [,1] [,2]
                               [,3]
                                         [,4]
A, C, D vs B 0.3333333 -1 0.3333333 0.3333333
A, D vs C
           0.5000000
                       0 -1.0000000 0.5000000
A vs D
            1.0000000
                        0 0.0000000 -1.0000000
library(gregmisc)
fit.contrast(anav,"TRAT",C)
                Estimate Std. Error
                                   t value
                                             Pr(>|t|)
                     -3 2.644995 -1.134218 0.273411441
TRAT A, C, D vs B
TRAT A, D vs C
                     -9
                         2.805441 -3.208052 0.005484112
TRAT A vs D
                      4
                         3.239444 1.234780 0.234739589
```

Usando o pacote **ExpDes.pt**, podemos perceber que esse pacote permite aplicar os seguintes testes de comparações múltiplas: Tukey (default), teste t, teste SNK, teste Scott-Knott, teste t modificado (Bonferroni), teste Duncan, teste de comparações bootstrap, e o teste de Calinski e Corsten baseado na distribuição F. Dentre esses iremos mostrar apenas os quatro primeiros, sendo que se optar pelos demais, basta seguir de forma similar as linhas de comando. Outros detalhes, mostraremos ao final da rotina.

```
Código R: Usando o ExpDes.pt
> #Usando o pacote: ExpDes.pt
>
> #Carregando pacote ExpDes.pt
> require(ExpDes.pt)
>
> #Lendo dados:
> dados <- read.table("iva.txt",h=T)</pre>
>
> #transformando TRAT em fator
> dados$TRAT <- as.factor(dados$TRAT)</pre>
>
> #abrindo o objeto dados
> attach(dados)
The following object is masked from dados (position 3):
  TRAT, VR
>
> #-----
> #ANAVA seguido dos testes de comparacoes multiplas
> #-----
>
> #Tukey:
> dic(trat=TRAT, resp=VR, quali = TRUE,
   mcomp = "tukey", sigT = 0.05, sigF = 0.05)
_____
Quadro da analise de variancia
   _____
       GL SQ QM Fc Pr>Fc
Tratamento 3 343.75 114.583 4.3676 0.019897
Residuo 16 419.76 26.235
Total
      19 763.51
_____
CV = 10.96 \%
_____
Teste de normalidade dos residuos (Shapiro-Wilk)
p-valor: 0.08918753
De acordo com o teste de Shapiro-Wilk a 5% de significancia, os
residuos podem ser considerados normais.
          _____
Teste de Tukey
_____
Grupos Tratamentos Medias
 С
    52
а
ab B
     49
```

A 45 ab b D 41 _____ > > #t de Student > dic(trat=TRAT, resp=VR, quali = TRUE, mcomp = "lsd", sigT = 0.05, sigF = 0.05)+ -------------Quadro da analise de variancia _____ #Rotina nao mostrada... _____ Teste t (LSD) _____ Grupos Tratamentos Medias a C 52 ab B 49 bc A 45 c D 41 _____ > > #snk > dic(trat=TRAT, resp=VR, quali = TRUE, mcomp = "snk", sigT = 0.05, sigF = 0.05)+ _____ Quadro da analise de variancia _____ #Rotina nao mostrada... Teste de Student-Newman-Keuls (SNK) _____ Grupos Tratamentos Medias a C 52 ab B 49 ab A 45 b D 41 -------> > #sk > dic(trat=TRAT, resp=VR, quali = TRUE, mcomp = "sk", sigT = 0.05, sigF = 0.05)+ _____ -----Quadro da analise de variancia -------#Rotina nao mostrada... _____ Teste de Scott-Knott

Capítulo 3. Exemplos Resolvidos

	Grupos	Tratamentos	Medias
1	a	C	52
2	a	В	49
3	b	А	45
4	b	D	41

Observem que em alguns resultados, não mostramos a saída do comando, pois essa é uma das desvantagens do pacote, em que cada vez que é solicitado o teste de comparação múltipla (PCM), a análise de variância tem que ser rodado novamente. Nos pacotes da rotina anterior, isso não é preciso, já que os pacotes **multicomp**, **agricolae** e **ScottKnott** que realizam os PCM's, são independentes dos comandos para realizar a ANAVA. Outro ponto interessante, é que as opções no pacote ExpDes para obter os testes de médias desejados foi por intermédio do argumento **mcomp**, lembrando que o argumento **quali** tem que ser igual a TRUE. Isso caracteriza que os níveis do fator são qualitativos. Caso **quali=FALSE**, após a ANAVA iria ser realizado o estudo de regressão, que será visto na próxima subseção.

3.4.1.5 Usando o SAS - Criando as rotinas

Para realizar os testes de médias no SAS, iremos salientar que esse programa não apresenta o teste Scott-Knott, embora apresente outras alternativas de testes de comparações múltiplas, das quais abordaremos: teste Tukey, teste SNK, t ou LSD, teste Scheffé, teste de contrastes e o teste Dunnett (usamos como exemplo, o tratamento A como testemunha). Segue abaixo a macro. Vale salientar que para essa situação, optou-se por usar o proc GLM devido ao proc Anova não permitir a opção de contrastes.

```
Macro SAS:
title 'Analise de Variancia do indice de envelhecimento acelerado
de sementes':
*Options PS=300 LS=75 nodate no number;
*Dados do experimento chamado 'dados';
Data dados;
input TRAT $ IVA @@;
cards;
A 40.20 C 47.10
A 49.30 C 55.50
A 40.10 C 58.30
A 43.00 C 53.40
A 52.40 C 45.70
B 42.00 D 38.10
B 44.50 D 45.90
B 53.00 D 43.70
B 54.50 D 40.60
B 51.00 D 36.70
Proc Anova data = dados;
  Class TRAT;
  Model IVA = TRAT;
  Means TRAT/Tukey alpha=0.05;
```

<pre>Means TRAT/SNK alpha=0.05; Means TRAT/T alpha=0.05; * teste t: usa-se T ou LSD; Means TRAT/Scheffe alpha=0.05; Means TRAT/Dunnett("A") alpha=0.05; Run;Quit;</pre>						
RESULTADO:						
Analise de Varia	ancia d	lo indice de The AN	envelhecimento	o acelerad	lo de sementes	
Dependent Varial	ole: IN	/A	OVA IIOCeduie			
F		Sum of				
Source	DF	Squares	Mean Square	F Value	Pr > F	
Model	3	343.7500000	114.5833333	4.37	0.0199	
Error	16	419.7600000	26.2350000			
Corrected Total	19	763.5100000				
R-Sa	lare	Coeff Var	Root MSE	IVA	Mean	
0.450	0223	10.95617	5.122011	46.7	5000	
Source	DF	Anova SS	Mean Square	F Value	Pr > F	
TRAT	3	343.7500000	114.5833333	4.37	0.0199	
	Tukey':	s Studentized	Range (HSD) 7	fest for I	VA	
NOTE: This tea gener	st cont rally ł	trols the Typ nas a higher	e I experiment Type II error	twise erro rate than	or rate, but it n REGWQ.	
Alpha			0.05			
Error Degrees of	f Freed	lom	16			
Error Mean Squar	re	10m	26 235			
Critical Value	of Stur	lentized Bang	20.200 a 4 04609			
Minimum Signific	cant Di	ifference	9.2681			
Means w	ith the	e same letter	are not signi	ificantly	different.	
Tuke	ey Grou	uping	Mean N	TRAT		
		А	52.000 5	С		
	В	А	49.000 5	В		
	В	А	45.000 5	А		
	В		41.000 5	D		
Student-Newman-Keuls Test for IVA NOTE: This test controls the Type I experimentwise error rate under the						
complete null hypothesis but not under partial null hypotheses.						

99

Capítulo 3. Exemplos Resolvidos -0.05 Alpha Error Degrees of Freedom 16 Error Mean Square 26.235 Number of Means 2 3 4 Critical Range 6.8673158 8.358839 9.2681158 Means with the same letter are not significantly different. SNK Grouping Mean Ν TRAT Α 52.000 5 С 5 B В Α 49.000 В Α 45.000 5 А 5 D В 41.000 t Tests (LSD) for IVA NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 0.05 Alpha Error Degrees of Freedom 16 26.235 Error Mean Square Critical Value of t 2.11991 Least Significant Difference 6.8673 Means with the same letter are not significantly different. t Grouping Mean Ν TRAT А 52.000 5 С В Α 49.000 5 В 5 A В С 45.000 С

Scheffe's Test for IVA

41.000

5

D

NOTE: This test controls the Type I experimentwise error rate.

Alpha

3.4. Estudo do experimento após a ANAVA

Error Degrees of Freedom	1 1	6					
Error Mean Square 26.235							
Critical Value of F	3,2388	7					
Minimum Significant Diff	erence 10.09	8					
minimum Digitificant Diff		0					
M		· · · · · ·					
Means with the same	letter are not	significan	itly different.				
Scheffe Groupi	.ng Me	an N	TRAT				
	A 52.0	00 5	C				
В	A 49.0	00 5	В				
В	A 45.0	00 5	А				
В	41.0	00 5	D				
	Dunnett's t T	ests for IV	ΤΔ				
		0000 101 10					
NOTE, This tost controls	the Turne I aw	norimontuic	o orror for				
NULE. IIIIS test controls	the type I ex	perimentwis					
comparisons of all	. creatments ag	ainst a con	ILFOI.				
		_					
Alpha	0.0	5					
Error Degrees of Freedom	Error Degrees of Freedom 16						
Error Mean Square	Error Mean Square 26.235						
Critical Value of Dunnet	t's t 2.5924	0					
Minimum Significant Diff	erence 8.397	9					
Comparisons significant	at the 0.05 le	vel are ind	licated by ***.				
······································							
	Difference						
TD A T	Between	Qimultor					
	Derween						
Comparison	Means	Confidenc	ce Limits				
C – A	7.000	-1.398	15.398				
B – A	4.000	-4.398	12.398				
D – A	-4.000	-12.398	4.398				

•

Inicialmente, vamos entender o comando Means effects / options;. Esse comando é usado após o comando Model, utilizado para estimarmos as médias de um determinado fator na análise de variância. As opções desse comando permitem-nos usar os testes de comparações múltiplas (PCM). O primeiro PCM calculado foi o teste Tukey, usando o comando Means TRAT/Tukey alpha=0.05, ao nível de significância de 5% de probabilidade. Os testes SNK, t e Scheffé foram executados usando o mesmo procedimento, apenas alterando o nome Tukey no comando por SNK, T e Scheffe, respectivamente. Vale salientar, que este último teste é calculado no SAS na sua versão antiga, isto é, compara as médias duas a duas. Por último, o teste Dunnett, com as seguintes linhas de comando Means TRAT/Dunnett("A") alpha=0.05, lembrando que o tratamento A para esse caso, como exemplo, representou o tratamento testemunha.

3.4.2 Regressão Linear

3.4.3 Estudo do efeito de compactação no solo

Exemplo 3.6: Dados alterados

Num experimento conduzido em casa de vegetação, no delineamento inteiramente ao acaso, com cinco repetições, foi estudado o efeito da compactação do solo no desenvolvimento de plantas de "ervilha". Foi avaliado um solo com compactações descritas por quatro densidades, em Mg/m^3 . Os resultados obtidos para o teor de matéria seca da parte aérea (MSPA), em gramas, foram os seguintes:

Tratamentos	Repetições				
(Mg/m^3)	1	2	3	4	5
1,31	2,61	$2,\!63$	$2,\!65$	2,64	2,62
1,43	$2,\!57$	$2,\!55$	$2,\!59$	$2,\!60$	$2,\!56$
$1,\!55$	$2,\!50$	$2,\!52$	$2,\!48$	$2,\!47$	$2,\!46$
$1,\!67$	$2,\!42$	$2,\!41$	$2,\!39$	$2,\!38$	$2,\!40$

- a) Faça a análise de variância, aplique o teste F e comente os resultados;
- b) Faça a análise de variância considerando regressão para densidades. Discuta os resultados;
- c) Obtenha a equação de regressão que se ajusta aos dados;
- d) Obtenha o coeficiente de determinação e comente;
- e) Represente graficamente a equação de regressão estimada.

Sisvar: Análise de Regressão

Entrada de dados com a extensão aquivo.dbf, usando o programa BrOffice.org Calc. Inicialmente, a estrutura do arquivo para esse exemplo é dado a seguir.

	A	в
1	TRAT	VR
2	1,31	2,61
3	1,31	2,63
4	1,31	2,31
5	1,31	2,74
6	1,31	2,76
7	1,43	2,57
8	1,43	2,55
9	1,43	2,59
10	1,43	2,60
11	1,43	2,56
12	1,55	2,50
13	1,55	2,52
14	1,55	2,48
15	1,55	2,47
16	1,55	2,46
17	1,67	2,45
18	1,67	2,41
19	1,67	2,39
20	1,67	2,38
21	1,67	2,40

Após digitado os dados, segue a exportação do arquivo do BrOffice para a exten-

S TABELA DE ANÁLISE DE VARIÂNCIA
TABELA DE ANALISE DE VARIANCIA
erro= Fim Adicionar
Abrir arquivo Fechar arquivo
Variáveis do arquivo
Limpar Remover Digite as Fontes de Variação
Ajuda

Passo 3: ...> Abrir arquivo > solo.dbf.

<mark>\$</mark> Abrir			×
exemplos-res exemplos-res	solvidos 👻 exem-reg-dic-solo - residuo 👻	Pesquisar exen	n-reg-dic-solo 😰
Organizar 👻 Nova pasta			80 · 🔟 🔞
🗼 Downloads 📃	Nome ^	Data de modificação	Тіро
😌 Dropbox 🖳 Locais	🗃 solo.dbf	17/05/2014 18:51	Planiha do OpenDo
🥽 Bibliotecas			
Documentos			
🔛 Imagens			
Músicas			
Vídeos			
🔣 Grupo doméstico			
1 Computador			
🚢 Disco Local (C:) 🚽			
🕞 Backup (D:)			
📻 Benallanna-2 (G:) 🚽 📢			
Nome:		DB e DBF files	(*.DB;*.DBF;*.db; •
		Abrir	Cancelar

Passo 4: Com o arquivo solo.dbf aberto no Sisvar, percebemos que as variáveis do arquivo são: TRAT (1,31; 1,43; 1,55 e 167) e VR (MPSA - teor de matéria seca da parte aérea, em gramas).

Passo 5: Adicionando a variável TRAT: em variáveis do arquivo, selecione a variável TRAT (1), e posteriormente, clique no botão Adicionar ou Enter (2). Depois de adicionado, a variável torna-se visível em Tabela de análise de variância (3).

Passo 6: Ao final desse passo, estamos prontos para terminar a adição de variáveis, já que em tabela de análise de variância inserimos a fonte de variação necessária, como visto na figura abaixo.

S TABELA DE ANÁLISE DE VARIÁ	INCIA		×
TABELA DE ANÁLISE D	E VARIÂNCIA		
TRAT		Attr argino Variáveis de VR	Tim Addicionar () Fechar arquivo 0 arquivo
Limpar Remover Dig	jite as Fontes de V	ariação	
Ajuda			
Dê preferência aos duplos cliques nas variáveis ao invés de digitá-las			

Passo 7: Para finalizarmos, basta apertar o botão **Fim**, do qual, abrirá uma janela perguntando: "Quer encerrar o quadro de análise de variância?". Em seguida, clique em **Yes**, seguindo para o próximo passo.

•

Passo 8: Como nossa fonte de variação (TRAT) é quantitativa, iremos fazer o estudo de regressão. Assim, clique em **TRAT**, selecione a opção **Regressão**, indique o nível de significância: 0,05, e clique Ok e Ok.

Passo 9: Nesse passo, iremos decidir qual o modelo de regressão linear iremos utilizar. Como temos 3gl em TRAT, poderemos escolher o modelo de regressão no máximo de segundo grau, pois pelo menos 1gl está destinado ao desvio de regressão. Assim, selecionaremos modelo de regressão de 1° e 2° grau, e depois clique Ok.

<mark>5</mark> Modelos de Regressã	o		[
TRAT			
1			
Monte seu modelo			
	□ 1/X	Exp[-(X^2)/2]	
	🗖 Log (X)	🔲 Log2(X)	
□ X^3	🗖 Ln (X)	🔲 Sen H (X)	
□ ×^4	🔲 Sen (X)	🔲 CosH (X)	
🗖 X^5	🗖 Cos (X)	🔲 TangH(X)	
□ ×^6	□ Tg (X)	🔲 Cotg (X)	
SQRT(X)	□ 1/(×+0.5)	☐ Ln(X)*Tg(X)	
□ ×^(1/3)	🗖 Exp (X)	🔲 Exp (X) * SenH (X)	
	Ok		

Passo 10: Nesse penúltimo passo, temos que agora apenas inserir a variável resposta. Dessa forma, clique em VR e finalize a análise Finalizar.

Passo 11: Antes de finalizar a análise, é perguntado se deseja fazer transformação nos dados. Isso ocorre, quando o resíduo não atende às pressuposições da análise de variância. Nesse caso, não iremos fazer transformação. Portanto, clique em Finalizar.

Ao final de todos esses passos, é exibido um relatório com todas as análises escolhidas.

	TABELA	A DE ANÁLISE DE V	ARIÂNCIA			
FV	GL	s	Q	QM	FC	Pr>F
TRAT	3	0.15273	5 0.0	50912 13	34.865	0.000
Total corri	10 10	0.00804				
	19	0.158//				
CV (%) = Média geral: 	2.522	25000 Número	de observaçõe	s:	20	
Regressão pa	ara a FV TRAT					
b1 : X b2 : X^2						
	Modelos redu	zidos sequenciai	5			
			t paral			
Parâmetro	Estimativa	SE	H0: Par=0	Pr> t		
b0	3.488517	0.04844478	72.010	0.000)	
b1	-0.648333	0.03238227	-20.021	0.0000)	
Valores da v independent	variável te Médias	observadas	Médias estima	das		
1.3 1.4 1.5 1.6	L0000 30000 50000 70000	2.630000 2.574000 2.486000 2.400000	2.6392 2.5614 2.4836 2.4058	00 00 00		
				1		
Parâmetro	Estimativa	SE	t para HO: Par=0	Pr> t		
b0	2.341590	0.66614614	3.515	0.0029	•	
b2	-0.520833	0.30170394	-1.726	0.3303	5	
R^2 = 99.819	6			//		·/
Somas de qu	uadrados seqüenc	iais - Tipo I (Туре I)			
Causas de Va	ariação G.L.	s.q.	Q.M	· / / ·	-c	Pr>F
b1	1	0.151321	0.15	1321 400.8	350	0.000
b2 Desvio	1	0.001125 0.000289	0.00	1125 2.9 0289 0.7	980 766	0.104
Erro	16	0.006040	0.00	0378		

Observe que o teste t e o teste F com 1gl são equivalentes, fato que pode ser verificado pelos valores-p das estatísticas das análises.

Como verificado que o coeficiente de regressão de segundo grau foi não significativo como também o desvio de regressão, poderemos então refazer a análise selecionando apenas o modelo de interesse (1º grau) do qual foi significativo. Assim,

TABELA DE ANÁLISE DE VARIÂNCIA F۷ GL SQ QM FC Pr>FC _____ ___ 0.152735 TRAT 0.050912 3 134.865 0.0000 16 0.000378 erro 0.006040 ____ _____ Total corrigido 19 0.158775 _____ _____ cv (%) = 0.77 Número de observações: Média geral: 2.5225000 20 Regressão para a FV TRAT Média harmonica do número de repetições (r): 5 Erro padrão de cada média dessa FV: 0,00868907359849139 b1 : X _____ _____ Modelos reduzidos sequenciais ------t para Parâmetro Estimativa SE HO: Par=0 Pr>|t| _____ -----------3.488517 0.04844478 72.010 0.0000 -0.648333 0.03238227 -20.021 0.0000 b0 **b1** _____ R^2 = 99.07% Valores da variável independente Médias observadas Médias estimadas _____ _____ _____ 1.310000 2.630000 2,639200 2.574000 1,430000 2.561400 2.486000 1.550000 2.483600 1.670000 2.400000 2.405800 _____ _____ Somas de quadrados seqüenciais - Tipo I (Type I) Q.M. Causas de Variação G.L. s.q. FC Pr>F _____ _____ _____ 1 0.151321 0.151321 400.850 2 0.001414 0.000707 1.873 b1 0.000 Desvio 1.873 0.186Erro 16 0.006040 0.000378

Código R:

1 1.31 2.61

	2	1.31	2.63	
	3	1.31	2.65	
	4	1.31	2.64	
	5	1.31	2.62	
	6	1.43	2.57	
	7	1.43	2.55	
	8	1.43	2.59	
	9	1.43	2.60	
	10	1.43	2.56	
	11	1 55	2.50	
	12	1 55	2 52	
	13	1 55	2.48	
	14	1 55	2.10	
	15	1 55	2.11	
	16	1 67	2.10	
	17	1 67	2.12	
	18	1 67	2.11	
	19	1 67	2.38	
	20	1 67	2.00	
	20	1.01	2.10	
;	#Ad	licior	nando	uma coluna trat como fator:
(dad	los <-	- trar	nsform(dados, trat = factor(TRAT)):dados
		TRAT	VR	trat
	1	1.31	2.61	1.31
	2	1.31	2.63	1.31
	3	1.31	2.65	1.31
,	4	1.31	2.64	1.31
	5	1.31	2.62	1.31
	6	1.43	2.57	1.43
	7	1.43	2.55	1.43
2	8	1.43	2.59	1.43
	9	1.43	2.60	1.43
	10	1.43	2.56	1.43
	11	1.55	2.50	1.55
	12	1.55	2.52	1.55
	13	1.55	2.48	1.55
	14	1.55	2.47	1.55
	15	1.55	2.46	1.55
	16	1.67	2.42	1.67
	17	1.67	2.41	1.67
	18	1.67	2.39	1.67
	19	1.67	2.38	1.67
	20	1.67	2.40	1.67
	###	#####	#####	+############
	#Di	agnos	stico	de analise:

#Estatistica descritiva: attach(dados) #abrindo dados estdesc <- by(dados\$VR,dados\$trat, summary);estdesc</pre> dados\$trat: 1.31 Min. 1st Qu. Median Mean 3rd Qu. Max. 2.61 2.62 2.63 2.63 2.64 2.65 _____ dados\$trat: 1.43 Min. 1st Qu. Median Mean 3rd Qu. Max. 2.550 2.560 2.570 2.574 2.590 2.600 _____ dados\$trat: 1.55 Min. 1st Qu. Median Mean 3rd Qu. Max. 2.460 2.470 2.480 2.486 2.500 2.520 dados\$trat: 1.67 Min. 1st Qu.MedianMean 3rd Qu.Max.2.382.392.402.402.412.42 dados.m <-tapply(VR, TRAT, mean);dados.m</pre> 1.31 1.43 1.55 1.67 2.630 2.574 2.486 2.400 dados.t <-tapply(TRAT, TRAT, mean);dados.t</pre> 1.31 1.43 1.55 1.67 1.31 1.43 1.55 1.67 dados.v <-tapply(VR, trat, var); dados.v</pre> 1.43 1.55 1.31 1.67 0.00025 0.00043 0.00058 0.00025 dados.sd <-tapply(VR, trat, sd); dados.sd</pre> 1.31 1.43 1.55 1.67 0.01581139 0.02073644 0.02408319 0.01581139 detach(dados) #fechando dados #Como inspecao grafica: plot(dados[3:2],main="Efeito de compactação do solo", xlab="Densidade (Mg/m³)",ylab="Matéria seca (g)") points(dados.m, pch="x", col="blue", cex=1.5)

#Teste de normalidade (Shapiro-Wilk)
shapiro.test(res)

Shapiro-Wilk normality test

```
data: res
W = 0.955, p-value = 0.4499
#homogeneidade de variancia (So eh valido para DIC)
bartlett.test(res~TRAT,data=dados)
Bartlett test of homogeneity of variances
data: res by TRAT
Bartlett's K-squared = 0.9584, df = 3, p-value = 0.8113
#Independencia dos residuos
library(car)
durbinWatsonTest(anava)
lag Autocorrelation D-W Statistic p-value
                           0.27
  1
       0.04503311 1.843709
Alternative hypothesis: rho != 0
#Analise de regressao na anava (DIC):
#Reg Linear, Quadratica e Cubica
library(ExpDes.pt)
dic(dados$TRAT, dados$VR, quali = F, sigT = 0.05, sigF = 0.05)
 _____
Quadro da analise de variancia
        GL SQ QM Fc Pr>Fc
Tratamento 3 0.15274 0.050912 134.87 1.4392e-11
Residuo
       16 0.00604 0.000378
Total
     19 0.15877
_____
CV = 0.77 \%
                                   _____
Teste de normalidade dos residuos (Shapiro-Wilk)
p-valor: 0.4499191
De acordo com o teste de Shapiro-Wilk a 5% de significancia, os
residuos podem ser considerados normais.
_____
Ajuste de modelos polinomiais de regressao
_____
$'Modelo linear
           _____
  Estimativa Erro.padrao
                        tc p.valor
b0 3.4885167 0.04844 72.01017
                                0
b1 -0.6483333 0.03238 -20.02125
                                0
```

```
$'R2 do modelo linear'
[1] 0.9907421
$'Analise de variancia do modelo linear'
                 GL SQ QM Fcp.valor
Efeito linear
                  1 0.15132 0.15132 400.85
                                              0
Desvios de Regressao 2 0.00141 0.00071
                                   1.87 0.18586
Residuos
                 16 0.00604 0.00038
             _____
$'Modelo quadratico
_____
  Estimativa Erro.padrao tc p.valor
b02.34158960.666153.515130.00287b10.90375000.899661.004550.33007
b2 -0.5208333 0.30170 -1.72631 0.10355
$'R2 do modelo quadratico'
[1] 0.9981078
$'Analise de variancia do modelo quadratico'
                 GL
                         SQ
                                QM Fc p.valor
Efeito linear
                  1 0.15132 0.15132 400.85
                                              0
Efeito quadratico 1 0.00113 0.00113 2.98 0.10355
Desvios de Regressao 1 0.00029 0.00029 0.77 0.39454
        16 0.00604 0.00038
Residuos
  _____
$'Modelo cubico
_____
  Estimativa Erro.padrao tc p.valor
b0 -8.361997 12.25129 -0.68254 0.50466
b122.64820724.868090.910730.37595b2-15.17939916.75604-0.905910.37843b33.2793213.747950.874960.39454
$'R2 do modelo cubico'
[1] 1
$'Analise de variancia do modelo cubico'
                 GL
                        SQ
                             QM Fc p.valor
Efeito linear1 0.15132 0.15132 400.850Efeito quadratico1 0.00113 0.00113 2.98 0.10355Efeito cubico1 0.00029 0.00029 0.77 0.39454
Desvios de Regressao 0 0.00000 0.00000 0 1
Residuos
                 16 0.00604 0.00038
```

```
#Reg Linear:
reglin <- lm(VR~TRAT,data=dados)</pre>
reglin1 <- summary(reglin);reglin1</pre>
Call:
lm(formula = VR ~ TRAT, data = dados)
Residuals:
    Min
               1Q
                    Median
                                 ЗQ
                                         Max
-0.02920 -0.01415 -0.00250 0.01165 0.03860
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.48852 0.05074 68.75 < 2e-16 ***
TRAT
           -0.64833 0.03392 -19.12 2.1e-13 ***
____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.02035 on 18 degrees of freedom
Multiple R-squared: 0.9531, Adjusted R-squared: 0.9504
F-statistic: 365.4 on 1 and 18 DF, p-value: 2.1e-13
#Reg Quadratica:
regquad <- lm(VR~TRAT+I(TRAT^2),data=dados);summary(regquad)</pre>
Call:
lm(formula = VR ~ TRAT + I(TRAT<sup>2</sup>), data = dados)
Residuals:
     Min
               1Q Median
                                 ЗQ
                                         Max
-0.03110 -0.01335 -0.00030 0.01335 0.03110
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              2.3416
                         0.6615
                                  3.540 0.00252 **
              0.9038
TRAT
                         0.8934 1.012 0.32594
I(TRAT<sup>2</sup>)
            -0.5208
                         0.2996 -1.738 0.10023
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.01929 on 17 degrees of freedom
Multiple R-squared: 0.9601, Adjusted R-squared: 0.9554
F-statistic: 204.7 on 2 and 17 DF, p-value: 1.273e-12
#Reg Cubica: Nao pode ser realizada, pois satura os desvios de regressao,
# tornando-o com Ogl, isso implica, que nao temos como verificar
# o quanto o desvio de regressao foi significativo ou nao. Obviamente,
# saturando os gl's do trat, o R<sup>2</sup> sempre dará 100%, pois eh justamente
```

```
o polinomio que passara por todos os pontos, nao fazendo sentido
#
# a analise.
#
regcub <- lm(VR~TRAT+I(TRAT^2)+I(TRAT^3),data=dados);summary(regcub)</pre>
Call:
lm(formula = VR ~ TRAT + I(TRAT<sup>2</sup>) + I(TRAT<sup>3</sup>), data = dados)
Residuals:
   Min
            1Q Median
                           ЗQ
                                  Max
-0.0260 -0.0145 -0.0020 0.0145 0.0340
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.362
                       12.251 -0.683
                                         0.505
TRAT
            22.648
                      24.868 0.911
                                         0.376
I(TRAT<sup>2</sup>)
            -15.179
                      16.756 -0.906
                                         0.378
I(TRAT^3)
              3.279
                        3.748 0.875
                                         0.395
Residual standard error: 0.01943 on 16 degrees of freedom
Multiple R-squared: 0.962, Adjusted R-squared: 0.9548
F-statistic: 134.9 on 3 and 16 DF, p-value: 1.439e-11
# Verificado o ajuste e os pressupostos
# podemos plotar os dados e a equação estimada.
par(mfrow=c(1,1))#Grafico unico
plot(dados[1:2],main="Efeito de compactação do solo",
    xlab="Densidade (Mg/m<sup>3</sup>)",ylab="Matéria seca (g)",axes=F)
#coordenada:
c1 = min(dados$VR) #menor valor
c2 = max(dados$VR) #maior valor
c3 = 5 \# num de elementos no intervalo [c1,c2]
c4 = min(dados$TRAT)-0.02 #inicio do eix
axis(side=2, at= round(seq(c1,c2, 1=c3),2), pos = c4)
#abscissa:
a1 = min(dados$TRAT) #menor valor
a2 = max(dados$TRAT) #maior valor
a3 = 5 # num de elementos no intervalo [a1,a2]
a4 = min(dados$VR)-0.02 #inicio do eix
axis(side=1, at = round(seq(a1,a2, 1=a3),2), pos = a4)
#reta ajustada da regressao linear:
abline(reglin,col="blue")
```


3.4.4 Estudo do efeito de compactação no solo

Exemplo 3.7: Estudo detalhado do resíduo

Num experimento conduzido em casa de vegetação, no delineamento inteiramente ao acaso, com cinco repetições, foi estudado o efeito da compactação do solo no desenvolvimento de plantas de "ervilha". Foi avaliado um solo com compactações descritas por quatro densidades, em Mg/m^3 . Os resultados obtidos para o teor de matéria seca da

Tratamentos		Re	petiçõ	<i>ŏ</i> es	
(Mg/m^3)	1	2	3	4	5
1,31	2,61	2,63	2,31	2,74	2,76
$1,\!43$	$2,\!57$	$2,\!55$	$2,\!59$	2,6	2,56
1,55	$2,\!50$	2,52	$2,\!48$	$2,\!47$	$2,\!46$
$1,\!67$	$2,\!45$	2,41	$2,\!39$	$2,\!38$	$2,\!40$

parte aérea (MSPA), em gramas, foram os seguintes:

- a) Faça a análise de variância, aplique o teste F e comente os resultados;
- b) Faça a análise de variância considerando regressão para densidades. Discuta os resultados;
- c) Obtenha a equação de regressão que se ajusta aos dados;
- d) Obtenha o coeficiente de determinação e comente;
- e) Represente graficamente a equação de regressão estimada.

3.5 Experimentos Fatoriais

Exemplo 3.8: Cultura do milho (2×2)

Um experimento avaliou o efeito do uso da adubação e da aplicação de calcário na cultura de milho. O experimento foi instalado num esquema fatorial 2^2 , utilizando um delineamento em blocos casualizados com três repetições. As produções obtidas, em kg/parcela forma as seguintes:

		I	Bloco	s
Adubação	Calcário	Ι	II	III
0	0	4	3	8
	1	6	8	10
1	0	8	10	12
	1	18	17	16

- a) Analise as pressuposições experimentais;
- b) Faça a análise de variância desdobrando o efeito de tratamento nos fatores envolvidos. Aplique o teste F e discuta os resultados;
- c) Caso o efeito da interação seja significativo, faça o estudo do desdobramento da interação;

Exemplo 3.9: Produção de Vinho (3×2)

Os resultados seguintes foram obtidos de um experimento em que foram avaliados três tipos de vinho (A, B, C) servidos em duas condições de temperatura (1- gelado, 2- ambiente). Foram utilizados quatro provadores que atribuíram as seguintes notas numa

escala de 1 a 10 (média de três determinações):

		Tratamentos				
Provadores	A_1	A_2	B_1	B_2	C_1	C_2
1	8,2	4,5	4,2	$5,\!6$	$_{9,3}$	9,6
2	$7,\!8$	$_{3,5}$	4,4	$4,\!9$	8,7	8,9
3	$6,\!0$	$_{3,8}$	5,3	5,4	6,5	7,3
4	8,0	4,7	6,8	6,8	$7,\!9$	$_{9,3}$

- a) Analise as pressuposições experimentais;
- b) Faça a análise de variância desdobrando o efeito de tratamento nos fatores envolvidos. Aplique o teste F e discuta os resultados;
- c) Faça a análise de variância estudando o efeito de temperatura em cada tipo de vinho;
- d) Faça a análise de variância estudando o efeito do tipo de vinho em cada temperatura. Aplique o teste de Tukey, quando necessário.

Exemplo 3.10: Eficiência de Fósforo na cultura do trigo $(3 \times 2 \times 2)$

Esse exemplo foi retirado de Banzatto e Kronka (2006, p. 120). Consideremos os dados de um experimento inteiramente casualizado no esquema fatorial $3 \times 2 \times 2$, com os fatores Cultivares de trigo (C_1 : BR 20 - Guató, tolerante ao alumínio; C_2 : BR 36 - Ianomami, sensível ao alumínio; e C_3 : BR 40 - Tuiúca, moderadamente sensível ao alumínio), Calagem (Ca_0 : 0t/ha calcário; e Ca_1 : 4,4t/ha de calcário e Fosfatagem (P_0 : 0mg de P/Kg de solo; e P_1 : 87mg de P/Kg de solo), no qual foi estudada e eficiência da cultura do trigo na utilização do fósforo, obtida pelo quociente do teor de matéria seca da parte aérea pela quantidade de fósforo absorvida, obtendo-se os dados da tabela abaixo.

	Repetições			
Tratamentos	1	2	3	4
$C_1 C a_0 P_0$	1255	1250	908	1431
$C_1 C a_0 P_1$	556	476	588	500
$C_1 C a_1 P_0$	714	770	667	667
$C_1Ca_1P_1$	417	454	454	385
$C_2 C a_0 P_0$	1428	1444	1667	1428
$C_2 C a_0 P_1$	625	526	667	526
$C_2Ca_1P_0$	769	911	1000	1254
$C_2Ca_1P_1$	370	476	417	357
$C_3Ca_0P_0$	1660	1662	1667	1667
$C_3Ca_0P_1$	526	714	588	714
$C_3Ca_1P_0$	625	909	909	667
$C_3Ca_1P_1$	526	556	400	476

Realize a ANAVA e caso a interação seja significativa, interprete-a.

Sisvar: Análise Fatorial

Entrada de dados com a extensão aquivo.dbf, usando o programa BrOffice.org Calc. Inicialmente, a estrutura do arquivo para esse exemplo é dado a seguir.

	A	в	c	D	E	F
1	TRAT	Cultivar	Calcio	Fosforo	Rep	EfPTrigo
2	1	C1	Ca0	P0	1	1255
3	2	C1	Ca0	P1	1	556
4	3	C1	Ca1	PO	1	714
5	4	C1	Ca1	P1	1	417
6	5	C2	Ca0	P0	1	1428
7	6	C2	Ca0	P1	1	625
8	7	C2	Ca1	P0	1	769
9	8	C2	Ca1	P1	1	370
10	9	C3	Ca0	PO	1	1660
11	10	C3	Ca0	P1	1	526
12	11	C3	Ca1	P0	1	625
13	12	C3	Ca1	P1	1	526
14	1	C1	Ca0	PO	2	1250
15	2	C1	Ca0	P1	2	476
16	3	C1	Ca1	PO	2	770
17	4	C1	Ca1	P1	2	454
18	5	C2	Ca0	PO	2	1444
19	6	C2	Ca0	P1	2	526
20	7	C2	Ca1	PO	2	911
21	8	C2	Ca1	P1	2	476
22	9	C3	Ca0	PO	2	1662
23	10	C3	Ca0	P1	2	714
24	11	C3	Ca1	P0	2	909
25	12	C3	Ca1	P1	2	556
	:	CL.	Ca0	P	:	548
	•		Cel	PO	•	607

Após digitado os dados, segue a exportação do arquivo do BrOffice para a extensão <>.dbf: Arquivo > Salvar como... > Salvar em: escolher o diretório > Tipo:dBASE(.dbf) > Nome: EfPTrigo.dbf > Abrir. O arquivo está pronto para a análise no Sisvar.

Usando agora o sisvar, seguindo os passos:

Passo 1: Sisvar > Análise > Anava.

Passo 2: ...> Anava > Abrir arquivo.

Passo 3: ...> Abrir arquivo > EfPTrigo.dbf.

S Abrir						×
🕥 🖟 • exemplos-re	esolvidos 🔻 exem-dic-fat3x2x2-trigo	- 🔯	Pesquisar exer	n-reg-dic-	solo	2
Organizar 👻 Nova pasta				855	- 1	0
🐌 Downloads 📃	Nome *	Data de	e modificação	Тіро		
😌 Dropbox 🖳 Locais	efPTrigo.dbf	17/05/2	2014 18:51	Planiha	do OpenD	0
 Bibliotecas Documentos Imagens Músicas Vídeos Grupo doméstico 						
P Computador						
🕞 Backup (D:)						
🕞 Benallanna-2 (G:)	•					►
Nome	:		DB e DBF files	(*.DB;*.0	DBF;*.db; Cancelar	•

Passo 4: Com o arquivo EfPTrigo.dbf aberto no Sisvar, percebemos que as variáveis do arquivo são: TRAT (1, 2, ..., 10), Cultivar $(C_1: BR 20, C_2: BR 36 e C_3: BR 40)$, Calagem $(Ca_0 e Ca_1)$, Fosfatagem $(P_0 e P_1)$ e EfPTrigo (Eficiência da cultura do trigo na utilização do fósforo).

Passo 5: Adicionando apenas a variável TRAT: em variáveis do arquivo, selecione a variável TRAT (1), e posteriormente, clique no botão Adicionar ou Enter (2). Depois de adicionado, a variável torna-se visível em Tabela de análise de variância (3). Adicionar apenas essa variável, resultará na análise de variância geral, considerando cada combinação dos fatores, como um nível do tratamento. Para finalizarmos, basta apertar o botão Fim.

Passo 6: Abrirá uma janela perguntando: "Quer encerrar o quadro de análise de variância?". Em seguida, clique em Yes, seguindo para o próximo passo.

Passo 7: Para nossa fonte de variação (TRAT), iremos aplicar o teste Tukey para comparações de médias, ao nível de significância: 0,05. Clique Ok e Ok.

Opções do quadro da análise d	💲 Escolha a opção da fonte de variação selecionada	X
Dê um clique duplo na FV par	FV: TRAT Teste escolhido Nenhum teste Teste Tukey Teste Tukey Teste de tum "merroni Teste (LSD) Scott Knott Contrastes Regressão Nível de significância: 0.05	
Ajuda	Ok	

Passo 8: Nesse penúltimo passo, temos que agora apenas inserir a variável resposta. Dessa forma, clique em EfPTrigo e finalize a análise Finalizar.

Passo 9: Antes de finalizar a análise, é perguntado se deseja fazer transformação nos dados. Isso ocorre, quando o resíduo não atende às pressuposições da análise de

variância. Nesse caso, não iremos fazer transformação. Portanto, clique em Finalizar

Ao final de todos esses passos, será exibido apenas a ANAVA geral, pois escolhemos a fonte de variação TRAT.

> TABELA DE ANÁLISE DE VARIÂNCIA GL FV SQ OM FC Pr>FC TRAT 7865565.229167 11 715051.384470 55,662 0,0000 erro 36 462468.750000 12846.354167 47 Total corrigido 8328033.979167 (%) = 13.73 Média geral: 825.4791667 Número de observações: 48 Teste Tukey para a FV TRAT DMS: 279.777049320929 NMS: 0.05 Média harmonica do número de repetições (r): 4 Erro padrão: 56.6708791326433 Tratamentos Médias Resultados do teste 405.000000 a1 427.500000 a1 a2 4 12 2 6 10 427.500000 a1 a2 489.500000 a1 a2 530.000000 a1 a2 586.000000 a1 a2 635.500000 a1 a2 704.500000 a2 а3 a3 a3 a3 635.500000 a1 704.500000 777.500000 a4 a4 a4 3 11 a3 983.500000 1 1211.000000 a5 5 9 1491.750000 a6 a6 1664.000000

Observe que pelo fato da ANAVA ser uma análise geral, os resultados do teste Tukey apresentam muitas ambiguidades, causando muitas vezes confusão nos resultados.

Assim, para um estudo detalhado iremos apresentar os tratamentos num esquema fatorial $(3 \times 2 \times 2)$. Iniciando pelo **passo 5**, já que os passos anteriores são os mesmos.

Passo 5.1: Vamos adicionar as fontes de variação da análise de variância. Inicialmente, adicionamos os fatores simples: CULTIVAR, CALCIO e FOSFORO. Esse procedimento é o mesmo apresentado no passo 5 feito anteriormente.

S TABELA DE ANÁLISE DE VARIÂNCIA	×
TABELA DE ANÁLISE DE VARIÂNCIA	
DULTWAR CALUQA FOSFORO	erro- Fim Addionar Advir arquivo Variáveis do arquivo TRAT CLEDO DECO DE
Limpar Remover Digite as Fontes de Variaç	ão
Ajuda	
Dê preferência aos duplos cliques nas variáveis ao invés de digitá-las	

Vamos agora inserir as interações 2×2 e a interação tripla. Para isso, iremos utilizar o botão Como exemplo, observe a interação entre Cultivar e Cálcio. Clique em CULTIVAR + + CALCIO + Adicionar |. Para a interação tripla, clique em CULTIVAR

+ $+$ $+$ CALCIO $+$ $+$ $+$ F abaixo.	OSFORO + Adicionar. A	Ao final, segue como visto na figura
	TABELA DE ANÁLISE DE VARIÁNCIA TABELA DE ANÁLISE DE VARIÁNCIA ULITVAR CALCO POSTAD CULTVAR FOSTAD CULTVAR FOSTAD CULTVAR FOSTAD CULTVAR FOSTAR FOS	Em Adoonal () Fecha aquivo do arquivo

Passo 7.1: Nesse passo, o interessante é verificar qual das fontes de variações foram significativas, para posteriormente, escolher quais as fontes de variação que faremos o teste de médias, já que, caso a interação tripla seja significativa, despreza-se as outras fontes, e o estudo passa a se concentrar nessa interação. Caso esta seja não significativa, prioriza-se as interações duplas, e por último, os fatores simples, caso as interações duplas sejam também não significativas. Feito isso, podemos verificar que a interação tripla foi significativa. Assim, faremos o desdobramento dessa interação. Como todas as fontes de variação envolvidas, ou são variáveis qualitativas ou quantitativas com apenas dois níveis, aplicaremos o teste Tukey. As figuras abaixo, ilustram esse procedimento.

 $1^{\rm o}$ Desdobrando a CULTIVAR dentro de CALCIO e FOSFORO

2º Desdobrando a CALCIO dentro de CULTIVAR e FOSFORO

$3^{\rm o}$ Desdobrando a FOSFORO dentro de CULTIVAR e CALCIO

Passo 8.1: Mesma do passo 8. Passo 9.1: Mesma do passo 9.

	TADEL 4		ANCTA	
	TABELA	DE ANALISE DE VARI	ANC 1A	
FV	GL	SQ	QM	Fc Pr>Fc
CULTIVAR CALCIO FOSFORO CULTIVAR*CALCIO CULTIVAR*FOSFORO CALCIO*FOSFORO CULTIVAR*CALCIO*FOSF erro	2 1 2 2 1 2 36	280979.291667 1810798.520833 4709400.520833 101204.291667 144533.791667 722016.020833 96632.791667 462468.750000	140489.645833 1810798.520833 4709400.520833 50602.145833 72266.895833 722016.020833 48316.395833 12846.354167	10.936 0.0002 140.958 0.0000 366.594 0.0000 3.939 0.0284 5.625 0.0075 56.204 0.0000 3.761 0.0329
Total corrigido	47	8328033.979167		
CV (%) = Média geral: 8	13.73 325.4791	667 Número de	observações:	48
Obs. Codificações usa	adas par	a as FV do quadro	de ANAVA	
1: CULTIVAR 2: CALCIO 3: FOSFORO 4: CULTIVAR*CALCIO 5: CULTIVAR*FOSFORO 6: CALCIO*FOSFORO 7: CULTIVAR*CALCIO*FC 8: Fim)SFORO			

Análise do de	sdobramento de CUL	TIVAR dentro de	cada nível de: CA	LCIO FOSFORO
	TABELA DE	ANÁLISE DE VARI	ANCIA	
FV	GL	sq	 QM	Fc Pr>Fc
CULTIVAR CULTIVAR CULTIVAR CULTIVAR Erro	/1 2 4 /2 2 /3 2 1 /4 2 36 4	18266.166667 22288.666667 67474.666667 15320.666667 62468.750000	209133.083333 11144.33333 83737.33333 7660.33333 12846.354167	16.280 0.0000 0.868 0.4245 6.518 0.0037 0.596 0.5529
Codificação u cod. CALCIO F 1 = CaO PO 2 = CaO P1 3 = Ca1 PO 4 = Ca1 P1	sada para o desdob OSFORO	ramento		
Teste de Tuke desdobramento Obs. Identifi	y para o de CULTIVAR dentr que a codificação	o da codificação conforme valores	: 1 apresentados ant	eriormente
Teste Tuke	y para a FV CULTIV	AR		
DMS: 195.9685	97102345 NMS: 0.0	5		
Média harmoni Erro padrão:	ca do número de re 56.6708791326433	petições (r): 4		
Tratamentos		Médias	Resultados d	o teste
C1 C2 C3		1211.000000 1491.750000 1664.000000	a1 a2 a2	
Teste de Tuke desdobramento Obs. Identifi	y para o de CULTIVAR dentr que a codificação	o da codificação conforme valores	: 3 apresentados ant	eriormente
Teste Tuke	y para a FV CULTIV	AR		
DMS: 195.9685	97102345 NMS: 0.0	5		
Média harmoni Erro padrão:	ca do número de re 56.6708791326433	petições (r): 4		
Tratamentos		Médias	Resultados d	o teste
C1 C3 C2		704.500000 777.500000 983.500000	a1 a1 a2	

```
-----
                          TABELA DE ANÁLISE DE VARIÂNCIA
     -----
                                                                              -----
                            GL 5Q QM
EV/
                                                                                       Fc Pr>Fc

        /1
        1
        513084.500000
        513084.500000
        39.940
        0.0000

        /2
        1
        21012.500000
        21012.500000
        1.636
        0.2091

        /3
        1
        516636.125000
        516636.125000
        40.217
        0.0000

        /4
        1
        65522.000000
        65522.000000
        5.100
        0.0301

        /5
        1
        1571764.500000
        1571764.500000
        122.351
        0.0000

        /6
        1
        42632.000000
        42632.000000
        3.319
        0.0768

        36
        462468.750000
        12846.354167
        12846.354167
        12846.354167

CALCIO
CALCIO
CALCTO
CALCIO
Erro
              _____
Codificação usada para o desdobramento
cod. CULTIVAR FOSFORO
1 = C1 P0
2 = C1 P1
  = C2 P0
= C2 P1
= C3 P0
= C3 P1
R
4
5
6
Teste de Tukey para o desdobramento de CALCIO dentro da codificação: 1
   Teste Tukey para a FV CALCIO
                                        _____
DMS: 162.541037750362 NMS: 0.05
Tratamentos
                                                  Médias Resultados do teste
                _____
                                               704.500000 a1
Ca1
                  1211.000000
Ca0
                                                           a2
Teste de Tukey para o desdobramento de CALCIO dentro da codificação:3
   Teste Tukey para a FV CALCIO
                                                _____
DMS: 162.541037750362 NMS: 0.05
Tratamentos
                                             Médias Resultados do teste
               _____
                                            983.500000 a1
1491.750000
Ca1
Ca0
                                                                a2
      .....
                                                                  _____
----
Teste de Tukey para o desdobramento de CALCIO dentro da codificação:4
  Teste Tukey para a FV CALCIO
DMS: 162.541037750362 NMS: 0.05
                                                  Médias
                                                               Resultados do teste
Tratamentos
              _____
Ca1
                                              405.000000 a1
                                              586.000000 a2
Ca0
              _____
                                                                             _____
I
.
Teste de Tukey para o
desdobramento de CALCIO dentro da codificação:5
   Teste Tukey para a FV CALCIO
DMS: 162.541037750362 NMS: 0.05
                                                 Médias Resultados do teste
Tratamentos
                                             777.500000 a1
1664.000000 a2
Ca1
Ca0
```

	TABELA DE ANA	LISE DE VAR	LANCIA		
FV	GL	sq		QM FC	Pr>Fc
FOSFORO /1 FOSFORO /2 FOSFORO /2 FOSFORO /4 FOSFORO /5 FOSFORO /6 Erro /6	1 9275 1 1534 1 16407 1 6693 1 21156 5 1 1658 36 4624	22.000000 58.000000 66.125000 24.500000 24.500000 88.000000 68.750000	927522.0000 153458.0000 1640766.12500 669324.50000 2115624.50000 165888.00000 12846.35410	00 72.201 00 11.946 00 127.722 00 52.102 00 164.687 00 12.913 57	0.0000 0.0014 0.0000 0.0000 0.0000 0.0000 0.0010
Codificação usada p cod. CULTIVAR CALCI 1 = C1 CaO 2 = C1 Ca1 3 = C2 CaO 4 = C2 Ca1 5 = C3 CaO 6 = C3 Ca1	para o desdobram CO	ento			
Teste de Tukey para	a o desdobrament	o de FOSFOR) dentro da coo	dificação: 1	
Teste Tukey para	a a FV FOSFORO				
DMS: 162.5410377503	62 NMS: 0.05				
Tratamentos		Média	s Resulta	los do teste	
P1 P0		530.0000 1211.0000	00 a1 00 a2		
Teste de Tukey para	a o desdobrament	o de FOSFOR) dentro da com	lificação:2	
Teste Tukey para	a a FV FOSFORO				
DMS: 162.5410377503	62 NMS: 0.05				
Tratamentos		Média	s Resulta	los do teste	
P1 P0		427.5000 704.5000	00 a1 00 a2		
Teste de Tukey para	a o desdobrament	o de FOSFOR) dentro da com	dificação:3	
Teste Tukey para	a a FV FOSFORO				
DMS: 162.5410377503	62 NMS: 0.05				
Tratamentos		Média	s Resulta	dos do teste	
P1 P0		586.0000 1491.7500	00 a1 00 a2		
Teste de Tukey para	a o desdobrament	o de FOSFOR) dentro da com	dificação: 4	
Teste Tukey para	a a FV FOSFORO				
DMS: 162.5410377503	62 NMS: 0.05				
Tratamentos		Média	s Resulta	dos do teste	
P1 P0		405.0000 983.5000	00 a1 00 a2		
Teste de Tukey para	a o desdobrament	o de FOSFOR) dentro da coo	dificação: 5	
Teste Tukey para	a a FV FOSFORO				
DMS: 162.5410377503	62 NMS: 0.05				
Tratamentos		Média	s Resulta	dos do teste	
P1		635.5000	00 a1		
PU		1664.0000	JU a2		
Teste de Tukey para	a o desdobrament	o de FOSFOR) dentro da coo	dificação: 6	
DMG: 162 F440377503					
Tratamentos	02 NM3: 0.05	uádi -	Poculta-		
		meula:	s Resulta	ios do Leste	
D1		400 5005	10 11		

3.6 Experimentos em parcelas subdivididas

Exemplo 3.11: Métodos de preparo de solo

Um exeperimento foi instalado num esquema de parcela subdividida para avaliar três métodos de preparo de solo (1, 2 e 3) e cinco variedades de cana (V, W, X, Y, Z). Os resultados referentes às produtividades (t/ha) foram os seguintes:

	Bloco 1			Bloco 2	
3	2	1	2	3	1
Z-189	Y-108	X- 86	X-108	Y-140	Y- 95
W-121	Z-135	W- 68	Y-103	X-135	V-132
V-140	W-148	Y- 81	V-107	Z-162	W- 70
Y-176	V-108	Z-122	Z-122	W- 81	X- 81
X-162	X-113	V- 111	W-135	V-146	Z- 94

- 1. Faça a análise de variância, aplique o teste F e discuta os resultados;
- 2. Faça um estudo da interação, comparando os métodos de preparo de solo pelo teste Tukey;
- 3. Determine a precisão do experimento;

Sisvar: Análise de Parcela Subdividida

Entrada de dados com a extensão aquivo.dbf, usando o programa BrOffice.org Calc. Inicialmente, a estrutura do arquivo para esse exemplo é dado a seguir.

	A	В	с	D
1	parcela	subparcela	bloco	prod
2	1	х	1	86
3	1	w	1	68
4	1	у	1	81
5	1	z	1	122
6	1	v	1	111
7	2	у	1	108
8	2	z	1	135
9	2	w	1	148
10	2	v	1	108
11	2	х	1	113
12	3	z	1	189
13	3	w	1	121
14	3	v	1	140
15	3	у	1	176
16	3	х	1	162
17	1	у	2	95
18	1	v	2	132
19	1	w	2	70
20	1	х	2	81
21	1	z	2	94
22	3	у	2	140
23	3	х	2	135
24	3	z	2	162
25	3	w	2	81
26	3	v	2	146
27	2	x	2	108
28	2	У	2	103
29	2	v	2	107
30	2	z	2	122
31	2	w	2	135

Após digitado os dados, segue a exportação do arquivo do BrOffice para a extensão <>.dbf: Arquivo > Salvar como... > Salvar em: escolher o diretório >

Tipo:dBASE(.dbf) > Nome: prepsolo.dbf > Abrir. O arquivo está pronto para a análise no Sisvar.

Usando agora o sisvar, seguindo os passos:

Passo 1: Sisvar > Análise > Anava.

Passo 2: ...> Anava > Abrir arquivo.

Passo 3: ...> Abrir arquivo > prepsolo.dbf.

Passo 4: Com o arquivo prepsolo.dbf aberto no Sisvar, percebemos que as variáveis do arquivo são: PARCELA que representa os tipos de solo (1, 2 e 3), SUBPARCELA que

representa os as variedades de cana(V, W, X, Y e Z), BLOCO (1 e 2) e PROD a variável resposta que representa a produtividade em t/ha.

S TABELA DE ANÁLISE DE VARIÂNCIA	X
	erro= Fim Adiciona * () Abiri arquivo Variáveis do arquivo Variáveis do arquivo VARIÉALELA BLOCO PROD
Limpar Bernover Digite as Fontes de Variaçã	io
Dê preferência aos duplos cliques nas variáveis ao invés de digitá-las	

Passo 5: Esse passo é bem delicado, pois é a montagem da estrutura da análise de variância para experimentos com parcela subdividida. Esse tipo de experimento, terá dois erros: Erro 1 (deve ser inserido no Sisvar) e Erro 2 (sai por diferença, e assim, o Sisvar internamente calcula. Portanto, não precisa ser inserido). Assim, essa estrutura desse experimento terá sempre o formato como segue.

S TABELA DE ANÁLISE D	E VARIÂNCIA		×
TABELA DE ANÁL	ISE DE VARIÂNCIA		_
BLOCO PARCELA	Estrutura da parcela	erro= Fim Adicionar	
SUBPARCELA PARCELA*SUBPARCELA	Estrutura da subparcela		
OBS.: O erro 2 sairá j	por diferença	Abrir arquivo Fechar arquivo	
		Variáveis do arquivo	
		PAREELA SUBPARELA BLOCO PROD	
Limpar Remover	Digite as Fontes de	Variação	
Ajuda	1		
Dê preferência aos duplos clic	ques nas variáveis ao invés de digitá	ilas	

Passo 6: Abrirá uma janela perguntando: "Quer encerrar o quadro de análise de variância?". Em seguida, clique em Yes, seguindo para o próximo passo.

Passo 7: Antes de aplicarmos algum teste de médias ou estudo de regressão, se for o caso, iremos saber qual dos efeitos da ANAVA foram significativos. Assim, em opções de quadro de análise de variância, não iremos clicar em nenhum efeito. Apenas clique em Ok.

Passo 8: Em Variáveis a serem analisadas selecione a variável resposta PROD, e clique em Finalizar.

💲 Variáveis a serem analisadas		×
Variáveis escolhidas para analisar:	Variáveis do arquivo:	
PROD	PARCELA SUBPARCELA BLOCO PROD	
N. variáveis: 1 Remover	Finalizar	

Passo 9: Antes de finalizar a análise, é perguntado se deseja fazer transformação nos dados. Isso ocorre, quando o resíduo não atende às pressuposições da análise de variância. Nesse caso, não iremos fazer transformação. Portanto, clique em Finalizar.

Ao final de todos esses passos, será exibido a ANAVA.

	TABELA DE	ANÁLISE DE VARIÂNCIA		
FV	GL	SQ	QM	Fc Pr>Fc
BLOCO PARCELA erro 1 SUBPARCELA PARCELA*SUBPARCELA erro 2	1 2 2 4 8 12	821.633333 13112.600000 854.466667 3704.466667 7810.733333 1438.400000	821.633333 6556.300000 427.233333 926.116667 976.341667 119.866667	1.923 0.2999 15.346 0.0612 7.726 0.0025 8.145 0.0008
Total corrigido	29	27742.300000		
CV 1 (%) = CV 2 (%) = Média geral:	17.33 9.18 119.3000000	Número de obse	rvações:	30

Sabendo que a interação foi significativa, esta é priorizada. Assim, repetimos os **Passos** de 1 a 6.

Passo 7.1: Para o estudo da interação, devemos fazer algumas observações. Uma delas é quando usarmos a variância complexa. Uma forma prática de entender é, quando se estuda a interação de um fator menor (em termos de área) dentro de um fator maior (em termos de área), não se utiliza variância complexa, o contrário sim, deve-se usar variância complexa. Por exemplo, estudar a PARCELA dentro de cada nível da SUBPARCELA, utiliza-se a variância complexa. Para este caso, a variância complexa será dado pela combinação do quadrado médio do erro 1 (parcela) com o quadrado médio do erro 2 (subparcela). Já para o estudo da SUBPARCELA dentro de cada nível da PARCELA, não se utiliza variância complexa.


```
Repete-se os Passos 8 e 9.
```

Análise do desdo	bramento de P	ARCELA dentro de cada	a nível de: SUBF	PARCELA
	TABELA D	E ANÁLISE DE VARIÂNCI	 IA	
FV	GL	 SQ	Qм	Fc Pr>Fc
PARCELA	/1 2	1279.000000	639.500000	3.527 0.0839
PARCELA	/2 2	5280.333333	2640.166667	14.559 0.0031
PARCELA	/3 2	4265.333333 5308.333333	2132.666667	11.761 0.0055
PARCELA	/5 2	4790.333333	2395.166667	13.208 0.0040
Erro	7	1269.380000	181.340000	
Codificação usad cod. SUBPARCELA 1 = v ; 2 = w Teste de Tukey p	a para o desd ; 3 = x ; 4 ara o desdobr	obramento = y ; 5 = z amento de PARCELA der	ntro da codifica	acão: 2
UMS: 39.64854435	24893 NMS: 0	. 05		
Tratamentos		Médias	Resultados do) teste
1 3 2		69.000000 at 101.000000 at 141.500000	L L a2	
Teste de Tukey p	ara o desdobr	amento de PARCELA der	ntro da codifica	ação: 3
DMS: 39.64854435	24893 NMS: 0	. 05		
Tratamentos		Médias	Resultados do) teste
1		83.500000 at	L	
2		110.500000 at	1 a2	
			a2	
Teste de Tukey p	ara o desdobr	amento de PARCELA der	ntro da codifica	ação:4
DMS: 39.64854435	24893 NMS: 0	. 05		
Tratamentos		Médias	Resultados do	teste
1 2 3		88.000000 a: 105.500000 a: 158.000000	1 1 a2	
Teste de Tukey p	ara o desdobr	amento de PARCELA der	ntro da codifica	ação: 5
DMS: 39.64854435	24893 NM5: 0	. 05		
Tratamentos		Médias	Resultados do	teste
1 2 3		108.000000 at 128.500000 at 175.500000	1 1 a2	

_				
Análise do desdol	oramento de	SUBPARCELA dentro d	e cada nível de:	PARCELA
	TABELA	DE ANÁLISE DE VARIÂ	NCIA	
EV/	CI			Ec. DryEc
F V	GL		QM	FC FF2FC
SUBPARCELA	/1 4	3447.000000	861.750000	7.189 0.0034
SUBPARCELA	/2 4	1965.600000	491.400000	4.100 0.0251
SUBPARCELA	/3 4	6102.600000	1525.650000	12.728 0.0003
Erro	12	1438.400000	119.86666/	
Codificação usada cod. PARCELA 1 = 1 2 = 2 3 = 3	a para o des	dobramento		
Teste de Tukey pa	ara o desdob	ramento de SUBPARCE	LA dentro da codi	ficação: 1
DMS: 34.90868115	39432 NMS:	0.05		
Tratamentos		Médias	Resultados d	lo teste
w x y z v		69.000000 83.500000 88.000000 108.000000 121.500000	a1 a1 a2 a1 a2 a3 a2 a3 a3 a3	
Teste de Tukey pa DMS: 34.908681153	ara o desdob 39432 NMS:	ramento de SUBPARCE 0.05	LA dentro da codi	ficação: 2
Tratamentos		Médias	Resultados d	lo teste
У V X z W		105.500000 107.500000 110.500000 128.500000 141.500000	a1 a1 a2 a1 a2 a1 a2 a2 a2	
Teste de Tukey pa	ara o desdob	ramento de SUBPARCE	LA dentro da codi	ificação: 3
DMS: 34.908681153	39432 NMS:	0.05		
Tratamentos		Médias	Resultados d	lo teste
W V X Y Z		101.000000 143.000000 148.500000 158.000000 175.500000	a1 a2 a2 a2 a2 a2 a2	

3.7 Análises interessantes

3.7.1 Granulometria do milho em ração para suínos

Exemplo 3.12: Delineamento em Blocos Causalizados

Sabe-se que o ganho de peso (Kg) de suínos é influenciado pela granulometria do milho utilizado no preparo da ração. Assim, o estudo utilizou-se moinho martelo com peneiras de 1,5; 2,0; 3,2 e 4,0 mm de diâmetros de furos para o preparo da ração a base de milho. O experimento foi avaliado em blocos casualizados com 8 repetições, com o próposito de controlar a influência do ambiente nas instalações em que os animais foram colocados. Os animais selecionados fora uniformemente quanto ao peso inicial. A parcela é formada

Bloco		Trata	mento)
	$^{-1,5}$	2,0	3,2	4,0
Ι	22.0	21.5	24.5	25.5
Ι	23.0	22.5	25.5	23.0
II	22.5	21.0	21.0	26.0
II	22.5	21.0	21.0	27.5
III	25.0	28.0	23.0	27.0
III	21.5	28.0	23.0	22.0
\mathbf{IV}	27.5	23.5	16.0	22.0
\mathbf{IV}	36.0	27.5	33.0	34.0
\mathbf{V}	24.0	21.5	25.0	25.0
\mathbf{V}	27.0	18.0	24.0	22.0
\mathbf{VI}	25.5	23.5	24.5	26.0
\mathbf{VI}	28.0	26.0	18.5	20.0
VII	26.0	27.5	25.0	26.0
\mathbf{VII}	29.0	29.5	17.0	27.0
VIII	24.0	22.5	25.0	26.5
VIII	27.0	24.0	27.0	22.5

р

Usando o SISVAR 3.7.2

3.8 Usar DIC ou DBC

Um dos grandes problemas no experimento é saber qual o delineamento mais eficiente para o estudo. Entre o DIC e o DBC, por exemplo num experimento de campo, poderemos tomar a decisão prévia de usar o DBC sem avaliar a área para verificar se existe variáveis indesejáveis no estudo, e daí corrermos alguns riscos, como por exemplo, afetar a precisão do experimento. Assim, o exemplo abaixo irá dar noções sobre os riscos de planejar o delineamento de forma incorreta num experimento.

3.8.1Exemplo da variedade de alho

Exemplo 3.13: Delineamento em Blocos Casualizados

Foi utilizado o delineamento em Blocos Casualizados, com três repetições, para comparar as produções de 4 variedades de alho. Os dados de produção, em Kg/parcela, sendo as variedades codificadas: Amarante - A, Quitéria - Q, Chonan - C, Gigante - G, estão apresentados a seguir

Bloco I	A $(26,90)$	Q(31,27)	C(21,42)	G(21,46)
Bloco II	G(24,15)	A $(25, 45)$	Q(32,00)	C(24,50)
Bloco III	C $(25,20)$	Q(31,20)	A (24,30)	G(28,18)

- a) Apresente a análise de variância e comente os resultados.
- b) Suponha que o delineamento experimental tivesse sido o DIC ao invés do DBC. Refaça a análise de variância e o teste Tukey.
- c) Comente sobre as diferenças de resultados (precisão, DMS do teste Tukey, comparações entre as médias dos tratamentos) nos item (a) e (b). Por que aconteceram diferenças (ou não)?

3.8.1.1 Solução analítica

Solução: Exemplo 3.13

(a) DIC

Levantando as hipóteses, temos:

- H_0 : As variedades de alho têm mesmo efeito de produtividade em Kg/ha;
- H_a : Pelo menos duas variedades de alho apresentam efeito de produtividade diferentes, em Kg/ha,.

Vamos apresentar os dados de produtividade (Kg/parcela) das quatro variedades de alho, por meio de uma tabela simplificada:

]	BLOCOS	5	
TRATAMENTOS	Ι	II	III	TOTAIS
Amarante	$26,\!90$	$25,\!45$	24,30	$76,\!65$
Quitéria	$31,\!27$	$32,\!00$	$31,\!20$	$94,\!47$
Chonan	$21,\!42$	$24,\!50$	$25,\!20$	$71,\!12$
Gigante	$21,\!46$	$24,\!15$	$28,\!18$	73,79
TOTAIS	101,05	106,10	108,88	316,03

A partir de agora, iremos desenvolver a análise de variância. Calculando inicialmente a correção, temos:

$$C = G^2/IJ$$

= 316,03²/12
= 8322,9134.

Posteriormente, as somas de quadrados:

$$SQ_{tot} = (26, 90^2 + 25, 45^2 + ... + 24, 15^2 + 28, 18^2) - C$$

= 8469, 0283 - C
= 146, 1149.
$$SQ_{trat} = \frac{1}{2}(76, 65^2 + 94, 47^2 + 71, 12^2 + 73, 79) - C$$

$$\begin{aligned} Q_{trat} &= \frac{1}{3}(76,65^2 + 94,47^2 + 71,12^2 + 73,79) - C \\ &= 8434,274 - C \\ &= 111,3606. \end{aligned}$$

$$SQ_{bloc} = \frac{1}{4}(101, 05^2 + 106, 10^2 + 108, 88^2) - C$$

= 8330, 79171 - C
= 7, 8783.

$$SQ_{res} = SQ_{tot} - SQ_{trat} - SQ_{bloc}$$
$$= 26,8760.$$

Fazendo a tabela de análise de variância, temos:

FV	GL	SQ	QM	Teste F	F tab
Tratamentos	3	111,3606	37,1202	$8,287^{*}$	4,76
Blocos	2	$7,\!8783$	3,9392	$0,879^{NS}$	$5,\!14$
Resíduo	6	$26,\!8760$	$4,\!4793$	-	
TOTAL	11	146,1149	-	-	

Percebemos pela análise de variância, pelo menos duas variedades de alho apresentaram efeito de produções médias diferentes, ao nível de significância de 5% de probabilidade.

A precisão do experimento é calculado da seguinte forma:

$$CV = \frac{\sqrt{QME}}{MG} \times 100, \qquad (3.11)$$

sendo MG a média geral do experimento, isto é,

$$MG = \frac{23,71+24,60+25,55+31,49}{4}$$

= 26,34kg/ha.

Assim, o CV é calculado

$$CV = \frac{\sqrt{4, 4, 4793}}{26, 34} \times 100 \tag{3.12}$$

$$= 8,04\%.$$
 (3.13)

O experimento apresenta alta precisão, pois CV < 10%. Isso implica, que nas mesmas condições desse experimento, se um outro for realizado, os resultados serão similares. No estudo das médias, o teste de comparação múltipla utilizado será o teste Tukey. Fazendo o estudo do teste Tukey, calculemos a DMS:

$$DMS = q_{4,6gl.} \times \sqrt{\frac{QME}{J}} \\ = 4,90 \times \sqrt{\frac{4,4793}{3}} \\ = 5,9874.$$

Fazendo a tabela de médias, temos:

Tratamentos	Médias	Teste Tukey
Chonan	23,71	b
Gigante	$24,\!60$	b
Amarante	$25,\!55$	b a
Quitéria	$31,\!49$	a

De acordo com o teste Tukey, ao nível de significância de 5% de probabilidade, conclui-se que a variedade Quitéria apresentou produtividade superior as variedades Chonan e Gigante, mas as produtividades das variedades Chonan, Gigante e Amarante, bem como Amarante e Quitéria, apresentaram produtividades estatisticamente iguais.

(b) DBC

Levantando as hipóteses, temos:

- H_0 : As variedades de alho têm mesma produtividade em Kg/ha;
- H_a : Pelo menos duas variedades de alho apresentam efeitos diferentes na produtividade em Kg/ha.

Vamos apresentar os dados de produção (Kg/parcela) das quatro variedades de alho, por meio de uma tabela simplificada:

	REI			
TRATAMENTOS	1	2	3	TOTAIS
Amarante	26,90	$25,\!45$	24,30	76,65
Quitéria	$31,\!27$	$32,\!00$	$31,\!20$	$94,\!47$
Chonan	$21,\!42$	24,50	$25,\!20$	$71,\!12$
Gigante	$21,\!46$	$24,\!15$	$28,\!18$	73,79

A partir de agora, iremos desenvolver a análise de variância. Calculando inicialmente a correção, temos:

$$C = G^2/IJ$$

= 316,03²/12
= 8322,9134.

Posteriormente, as somas de quadrados:

$$SQ_{tot} = (26, 90^2 + 25, 45^2 + \ldots + 24, 15^2 + 28, 18^2) - C$$

= 8469, 0283 - C
= 146, 1149.

$$SQ_{trat} = \frac{1}{3}(76, 65^2 + 94, 47^2 + 71, 12^2 + 73, 79^2) - C$$

= 8434, 274 - C
= 111, 3606.

$$SQ_{res} = SQ_{tot} - SQ_{trat} - SQ_{bloc}$$

= 34,7543.

A valor dos quadrados médios são encontrados pela razão entre a soma de quadrados e o grau de liberdade da fonte de variação em análise. Fazendo a tabela de análise de variância, temos:

Tabela 1: Análise de variância da produção em kg/ha das variedades de alho.

FV	GL	SQ	QM	Teste F	F tab
Tratamentos	3	111,3606	37,1202	$8,54^{*}$	4,07
Resíduo	8	34,7543	4,3429	-	
TOTAL	11	146,1149	-	-	

Percebemos pela análise de variância, pelo menos duas variedades de alho apresentaram efeito de produções médias diferentes, ao nível de significância de 5% de probabilidade. A precisão do experimento é calculado da seguinte forma:

$$CV = \frac{\sqrt{QME}}{MG} \times 100, \qquad (3.14)$$

sendo MG a média geral do experimento, isto é,

$$MG = \frac{23,71+24,60+25,55+31,49}{4}$$

= 26,35kg/ha.

Assim, o CV é calculado

$$CV = \frac{\sqrt{4,3429}}{26,34} \times 100 \tag{3.15}$$

$$= 7,91\%.$$
 (3.16)

O experimento apresenta alta precisão, pois CV < 10%. Isso implica, que nas mesmas condições desse experimento, se um outro for realizado, os resultados serão similares. No estudo das médias os testes de comparações múltiplas usaremos o teste Tukey, já que o test F foi significativo para o efeito dos tratamentos.

Fazendo o estudo do teste Tukey, calculemos a DMS:

$$DMS = q_{4,8gl.} \times \sqrt{\frac{QME}{J}}$$
$$= 4,53 \times \sqrt{\frac{4,3442}{3}}$$
$$= 5,45.$$

Fazendo a tabela de médias, temos:

Tabela 2: Pr	codução média, em kg/ha , das va	riedades de alho.
Tratamentos	Médias	Teste Tukey
Chonan	23,7067	b
Gigante	$24,\!5967$	b
Amarante	$25,\!5500$	b
Quitéria	31,4900	a

De acordo com o teste Tukey, ao nível de significância de 5% de probabilidade, conclui-se que a variedade Quitéria apresentou produtividade superior as demais.

(c)

Observamos que o fato de ter usado de ter usado o controle local no item (a), sendo que o efeito de bloco na anava foi não significativo, implicou numa perda nos graus de liberdade para o resíduo sem motivos. Isso proporciona um quadrado médio no resíduo maior que no ítem (b), em que não se utilizou controle local. A perda dos graus de liberdade também influencia a DMS, já que tanto os graus de liberdade quanto o QME se alteram. A precisão mostrou nitidamente que a escolha do delineamento influenciou os resultados da anava, como também pode ter influenciado na falta de transitividade do teste Tukey.

Assim, de forma prática, se realizarmos mais alguns experimentos e detectarmos que o efeito do controle local na área experimental é não significativo, não haverá problemas de se utilizar o DIC em campo.

Caso deseje realizar o exercício nos softwares R, Sisvar e SAS, basta consultar as subseções 3.1.1 e 3.2.1 para realizar as análises em DIC e DBC, respectivamente.

3.9 Planejamento de Experimentos

Exemplo 3.14

Um pesquisador da cultura do milho deseja instalar um experimento para comparar seis cultivares dispondo de sementes, adubo e área para plantio suficientes para utilizar até 8 repetições. O terreno disponível apresenta declividade de 10%. A parcela de campo para a cultura do milho usualmente é constituída de quatro linhas de plantio com cinco metros de comprimento sendo 0,90m o espaçamento entre linhas e uma planta a cada 0,20m de linha. Quando necessário, despreza-se as produções das linhas laterais e de meio metro nos extremos das duas linhas centrais com a finalidade de bordadura. Planeje um experimento para esse estudo. Descreva: fator, categorias, tratamentos, tamanho da parcela, número de repetições necessidade ou não de bordadura, delineamento e variáveis resposta. Faça o croqui o experimento e da parcela.

Referências Bibliográficas

BANZATTO, D. A.; KRONKA, S. do N. **Experimentação Agrícola**. 4. ed. Jaboticabal: Funep, 2006. 237 p.

SILVA, J. G. C. da. Estatística experimental: Planejamento de experimentos. Pelotas: UFPEL, 2007. 511 p.

ZIMMERMANN, F. J. P. Estatística aplicada à pesquisa agrícola. Santo Antônio de Goiás: Embrapa Arroz e Feijão, 2004. 402 p.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

'So Calming.'

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Malaysian LATEX User Group •

http://latex-my.blogspot.com Cover Illustration by Dusan Bicanski •

http://www.public-domain-image.com